Do you want to publish a course? Click here

A survey on the lace expansion for the nearest-neighbor models on the BCC lattice

350   0   0.0 ( 0 )
 Added by Yoshinori Kamijima
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The aim of this survey is to explain, in a self-contained and relatively beginner-friendly manner, the lace expansion for the nearest-neighbor models of self-avoiding walk and percolation that converges in all dimensions above 6 and 9, respectively. To achieve this, we consider a $d$-dimensional version of the body-centered cubic (BCC) lattice, on which it is extremely easy to enumerate various random-walk quantities. Also, we choose a particular set of bootstrapping functions, by which a notoriously complicated part of the lace-expansion analysis becomes rather transparent.



rate research

Read More

200 - Akira Sakai 2007
We provide a complete proof of the diagrammatic bounds on the lace-expansion coefficients for oriented percolation, which are used in [arXiv:math/0703455] to investigate critical behavior for long-range oriented percolation above 2min{alpha,2} spatial dimensions.
We derive a continuous-time lace expansion for a broad class of self-interacting continuous-time random walks. Our expansion applies when the self-interaction is a sufficiently nice function of the local time of a continuous-time random walk. As a special case we obtain a continuous-time lace expansion for a class of spin systems that admit continuous-time random walk representations. We apply our lace expansion to the $n$-component $g|varphi|^4$ model on $mathbb{Z}^{d}$ when $n=1,2$, and prove that the critical Greens function $G_{ u_{c}}(x)$ is asymptotically a multiple of $|x|^{2-d}$ when $dgeq 5$ at weak coupling. As another application of our method we establish the analogous result for the lattice Edwards model at weak coupling.
In this paper, we consider nearest-neighbor oriented percolation with independent Bernoulli bond-occupation probability on the $d$-dimensional body-centered cubic (BCC) lattice $mathbb{L}^d$ and the set of non-negative integers $mathbb{Z}_+$. Thanks to the nice structure of the BCC lattice, we prove that the infrared bound holds on $mathbb{L}^dtimesmathbb{Z}_+$ in all dimensions $dgeq 9$. As opposed to ordinary percolation, we have to deal with the complex numbers due to asymmetry induced by time-orientation, which makes it hard to estimate the bootstrapping functions in the lace-expansion analysis from above. By investigating the Fourier-Laplace transform of the random-walk Green function and the two-point function, we drive the key properties to obtain the upper bounds and resolve a problematic issue in Nguyen and Yangs bound.
We calculate the local Green function for a quantum-mechanical particle with hopping between nearest and next-nearest neighbors on the Bethe lattice, where the on-site energies may alternate on sublattices. For infinite connectivity the renormalized perturbation expansion is carried out by counting all non-self-intersecting paths, leading to an implicit equation for the local Green function. By integrating out branches of the Bethe lattice the same equation is obtained from a path integral approach for the partition function. This also provides the local Green function for finite connectivity. Finally, a recently developed topological approach is extended to derive an operator identity which maps the problem onto the case of only nearest-neighbor hopping. We find in particular that hopping between next-nearest neighbors leads to an asymmetric spectrum with additional van-Hove singularities.
193 - Akira Sakai 2020
The lace expansion for the Ising two-point function was successfully derived in Sakai (Commun. Math. Phys., 272 (2007): 283--344). It is an identity that involves an alternating series of the lace-expansion coefficients. In the same paper, we claimed that the expansion coefficients obey certain diagrammatic bounds which imply faster $x$-space decay (as the two-point function cubed) above the critical dimension $d_c$ ($=4$ for finite-variance models), if the spin-spin coupling is ferromagnetic, translation-invariant, summable and symmetric with respect to the underlying lattice symmetries. However, we recently found a flaw in the proof of Lemma 4.2 in Sakai (2007), a key lemma to the aforementioned diagrammatic bounds. In this paper, we no longer use the problematic Lemma 4.2 of Sakai (2007), and prove new diagrammatic bounds on the expansion coefficients that are slightly more complicated than those in Proposition 4.1 of Sakai (2007) but nonetheless obey the same fast decay above the critical dimension $d_c$. Consequently, the lace-expansion results for the Ising and $varphi^4$ models so far are all saved. The proof is based on the random-current representation and its source-switching technique of Griffiths, Hurst and Sherman, combined with a double expansion: a lace expansion for the lace-expansion coefficients.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا