Do you want to publish a course? Click here

The Transition from Diffuse Molecular Gas to Molecular Cloud Material in Taurus

117   0   0.0 ( 0 )
 Added by Steven Federman
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study four lines of sight that probe the transition from diffuse molecular gas to molecular cloud material in Taurus. Measurements of atomic and molecular absorption are used to infer the distribution of species and the physical conditions toward stars behind the Taurus Molecular Cloud (TMC). New high-resolution spectra at visible and near infrared wavelengths of interstellar Ca II, Ca I, K I, CH, CH^+, C2, CN, and CO toward HD28975 and HD29647 are combined with data at visible wavelengths and published CO results from ultraviolet measurements for HD27778 and HD30122. Gas densities and temperatures are inferred from C2, CN, and CO excitation and CN chemistry. Our results for HD29647 are noteworthy because the CO column density is 10^{18} cm^{-2} while C2 and CO excitation reveals a temperature of 10 K and density about 1000 cm^{-3}, more like conditions found in dark molecular clouds. Similar results arise from our chemical analysis for CN through reactions involving observations of CH, C2, and NH. Enhanced potassium depletion and a reduced CH/H2 column density ratio also suggest the presence of a dark cloud. The directions toward HD27778 and HD30122 probe molecule-rich diffuse clouds, which can be considered CO-dark gas, while the sight line toward HD28975 represents an intermediate case. Maps of dust temperature help refine the description of the material along the four sight lines and provide an estimate of the distance between HD29647 and a clump in the TMC. An Appendix provides results for the direction toward HD26571; this star also probes diffuse molecular gas.



rate research

Read More

Molecular clouds are a fundamental ingredient of galaxies: they are the channels that transform the diffuse gas into stars. The detailed process of how they do it is not completely understood. We review the current knowledge of molecular clouds and their substructure from scales $sim~$1~kpc down to the filament and core scale. We first review the mechanisms of cloud formation from the warm diffuse interstellar medium down to the cold and dense molecular clouds, the process of molecule formation and the role of the thermal and gravitational instabilities. We also discuss the main physical mechanisms through which clouds gather their mass, and note that all of them may have a role at various stages of the process. In order to understand the dynamics of clouds we then give a critical review of the widely used virial theorem, and its relation to the measurable properties of molecular clouds. Since these properties are the tools we have for understanding the dynamical state of clouds, we critically analyse them. We finally discuss the ubiquitous filamentary structure of molecular clouds and its connection to prestellar cores and star formation.
Optical stellar polarimetry in the Perseus molecular cloud direction is known to show a fully mixed bi-modal distribution of position angles across the cloud (Goodman et al. 1990). We study the Gaia trigonometric distances to each of these stars and reveal that the two components in position angles trace two different dust clouds along the line of sight. One component, which shows a polarization angle of -37.6 deg +/- 35.2 deg and a higher polarization fraction of 2.0 +/- 1.7%, primarily traces the Perseus molecular cloud at a distance of 300 pc. The other component, which shows a polarization angle of +66.8 deg +/- 19.1 deg and a lower polarization fraction of 0.8 +/- 0.6%, traces a foreground cloud at a distance of 150 pc. The foreground cloud is faint, with a maximum visual extinction of < 1 mag. We identify that foreground cloud as the outer edge of the Taurus molecular cloud. Between the Perseus and Taurus molecular clouds, we identify a lower-density ellipsoidal dust cavity with a size of 100 -- 160 pc. This dust cavity locates at l = 170 deg, b = -20 deg, and d = 240 pc, which corresponds to an HI shell generally associated with the Per OB2 association. The two-component polarization signature observed toward the Perseus molecular cloud can therefore be explained by a combination of the plane-of-sky orientations of the magnetic field both at the front and at the back of this dust cavity.
151 - Chris Brunt 2010
Supersonic turbulence in molecular clouds is a key agent in generating density enhancements that may subsequently go on to form stars. The stronger the turbulence - the higher the Mach number - the more extreme the density fluctuations are expected to be. Numerical models predict an increase in density variance with rms Mach number of the form: sigma^{2}_{rho/rho_{0}} = b^{2}M^{2}, where b is a numerically-estimated parameter, and this prediction forms the basis of a large number of analytic models of star formation. We provide an estimate of the parameter b from 13CO J=1-0 spectral line imaging observations and extinction mapping of the Taurus molecular cloud, using a recently developed technique that needs information contained solely in the projected column density field to calculate sigma^{2}_{rho/rho_{0}}. We find b ~ 0.48, which is consistent with typical numerical estimates, and is characteristic of turbulent driving that includes a mixture of solenoidal and compressive modes. More conservatively, we constrain b to lie in the range 0.3-0.8, depending on the influence of sub-resolution structure and the role of diffuse atomic material in the column density budget. We also report a break in the Taurus column density power spectrum at a scale of ~1pc, and find that the break is associated with anisotropy in the power spectrum. The break is observed in both 13CO and dust extinction power spectra, which, remarkably, are effectively identical despite detailed spatial differences between the 13CO and dust extinction maps. [ abridged ]
139 - Paul F. Goldsmith 2013
We use UV measurements of interstellar CO towards nearby stars to calculate the density in the diffuse molecular clouds containing the molecules responsible for the observed absorption. Chemical models and recent calculations of the excitation rate coefficients indicate that the regions in which CO is found have hydrogen predominantly in molecular form. We carry out statistical equilibrium calculations using CO-H2 collision rates to solve for the H2 density in the observed sources without including effects of radiative trapping. We have assumed kinetic temperatures of 50 K and 100 K, finding this choice to make relatively little difference to the lowest transition. For the sources having T_ex(1-0) only, for which we could determine upper and lower density limits, we find <n(H2)> = 49 cm-3. While we can find a consistent density range for a good fraction of the sources having either two or three values of the excitation temperature, there is a suggestion that the higher-J transitions are sampling clouds or regions within diffuse molecular cloud material that have higher densities than the material sampled by the J = 1-0 transition. The assumed kinetic temperature and derived H2 density are anticorrelated when the J = 2-1 transition data, the J = 3-2 transition data, or both are included. For sources with either two or three values of the excitation temperature, we find average values of the midpoint of the density range that is consistent with all of the observations equal to 68 cm-3 for T_k = 100 K and 92 cm-3 for T_k = 50 K. The data for this set of sources imply that diffuse molecular clouds are characterized by an average thermal pressure between 4600 and 6800 Kcm-3.
The 100 square degree FCRAO CO survey of the Taurus molecular cloud provides an excellent opportunity to undertake an unbiased survey of a large, nearby, molecular cloud complex for molecular outflow activity. Our study provides information on the extent, energetics and frequency of outflows in this region, which are then used to assess the impact of outflows on the parent molecular cloud. The search identified 20 outflows in the Taurus region, 8 of which were previously unknown. Both $^{12}$CO and $^{13}$CO data cubes from the Taurus molecular map were used, and dynamical properties of the outflows are derived. Even for previously known outflows, our large-scale maps indicate that many of the outflows are much larger than previously suspected, with eight of the flows (40%) being more than a parsec long. The mass, momentum and kinetic energy from the 20 outflows are compared to the repository of turbulent energy in Taurus. Comparing the energy deposition rate from outflows to the dissipation rate of turbulence, we conclude that outflows by themselves cannot sustain the observed turbulence seen in the entire cloud. However, when the impact of outflows is studied in selected regions of Taurus, it is seen that locally, outflows can provide a significant source of turbulence and feedback. Five of the eight newly discovered outflows have no known associated stellar source, indicating that they may be embedded Class 0 sources. In Taurus, 30% of Class I sources and 12% of Flat spectrum sources from the Spitzer YSO catalogue have outflows, while 75% of known Class 0 objects have outflows. Overall, the paucity of outflows in Taurus compared to the embedded population of Class I and Flat Spectrum YSOs indicate that molecular outflows are a short-lived stage marking the youngest phase of protostellar life.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا