Do you want to publish a course? Click here

Querying RDF Databases with Sub-CONSTRUCTs

81   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Graph query languages feature mainly two kinds of queries when applied to a graph database: those inspired by relational databases which return tables such as SELECT queries and those which return graphs such as CONSTRUCT queries in SPARQL. The latter are object of study in the present paper. For this purpose, a core graph query language GrAL is defined with focus on CONSTRUCT queries. Queries in GrAL form the final step of a recursive process involving so-called GrAL patterns. By evaluating a query over a graph one gets a graph, while by evaluating a pattern over a graph one gets a set of matches which involves both a graph and a table. CONSTRUCT queries are based on CONSTRUCT patterns, and sub-CONSTRUCT patterns come for free from the recursive definition of patterns. The semantics of GrAL is based on RDF graphs with a slight modification which consists in accepting isolated nodes. Such an extension of RDF graphs eases the definition of the evaluation semantics, which is mainly captured by a unique operation called Merge. Besides, we define aggregations as part of GrAL expressions, which leads to an original local processing of aggregations.



rate research

Read More

The RDF graph-based data model has seen ever-broadening adoption in recent years, prompting the standardization of the SPARQL query language for RDF, and the development of local and distributed engines for processing SPARQL queries. This survey paper provides a comprehensive review of techniques, engines and benchmarks for querying RDF knowledge graphs. While other reviews on this topic tend to focus on the distributed setting, the main focus of the work is on providing a comprehensive survey of state-of-the-art storage, indexing and query processing techniques for efficiently evaluating SPARQL queries in a local setting (on one machine). To keep the survey self-contained, we also provide a short discussion on graph partitioning techniques used in the distributed setting. We conclude by discussing contemporary research challenges for further improving SPARQL query engines. An online extended version also provides a survey of over one hundred SPARQL query engines and the techniques they use, along with twelve benchmarks and their features.
As most users do not precisely know the structure and/or the content of databases, their queries do not exactly reflect their information needs. The database management systems (DBMS) may interact with users and use their feedback on the returned results to learn the information needs behind their queries. Current query interfaces assume that users do not learn and modify the way way they express their information needs in form of queries during their interaction with the DBMS. Using a real-world interaction workload, we show that users learn and modify how to express their information needs during their interactions with the DBMS and their learning is accurately modeled by a well-known reinforcement learning mechanism. As current data interaction systems assume that users do not modify their strategies, they cannot discover the information needs behind users queries effectively. We model the interaction between users and DBMS as a game with identical interest between two rational agents whose goal is to establish a common language for representing information needs in form of queries. We propose a reinforcement learning method that learns and answers the information needs behind queries and adapts to the changes in users strategies and prove that it improves the effectiveness of answering queries stochastically speaking. We propose two efficient implementation of this method over large relational databases. Our extensive empirical studies over real-world query workloads indicate that our algorithms are efficient and effective.
The class of queries for detecting path is an important as those can extract implicit binary relations over the nodes of input graphs. Most of the path querying languages used by the RDF community, like property paths in W3C SPARQL 1.1 and nested regular expressions in nSPARQL are based on the regular expressions. Federated queries allow for combining graph patterns and relational database that enables the evaluations over several heterogeneous data resources within a single query. Federated queries in W3C SPARQL 1.1 currently evaluated over different SPARQL endpoints. In this paper, we present a federated path querying language as an extension of regular path querying language for supporting RDF graph integration with relational database. The federated path querying language is absolutely more expressive than nested regular expressions and negation-free property paths. Its additional expressivity can be used for capturing the conjunction and federation of nested regular path queries. Despite the increase in expressivity, we also show that federated path queries are still enjoy a low computational complexity and can be evaluated efficiently.
92 - Jan Chomicki 2006
We present here a formal foundation for an iterative and incremental approach to constructing and evaluating preference queries. Our main focus is on query modification: a query transformation approach which works by revising the preference relation in the query. We provide a detailed analysis of the cases where the order-theoretic properties of the preference relation are preserved by the revision. We consider a number of different revision operators: union, prioritized and Pareto composition. We also formulate algebraic laws that enable incremental evaluation of preference queries. Finally, we consider two variations of the basic framework: finite restrictions of preference relations and weak-order extensions of strict partial order preference relations.
Materialisation is often used in RDF systems as a preprocessing step to derive all facts implied by given RDF triples and rules. Although widely used, materialisation considers all possible rule applications and can use a lot of memory for storing the derived facts, which can hinder performance. We present a novel materialisation technique that compresses the RDF triples so that the rules can sometimes be applied to multiple facts at once, and the derived facts can be represented using structure sharing. Our technique can thus require less space, as well as skip certain rule applications. Our experiments show that our technique can be very effective: when the rules are relatively simple, our system is both faster and requires less memory than prominent state-of-the-art RDF systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا