Do you want to publish a course? Click here

AC losses in macroscopic thin-walled superconducting niobium cylinders

348   0   0.0 ( 0 )
 Added by Menachem Tsindlekht
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Measurements of the ac response represent a widely-used method for probing the properties of superconductors. In the surface superconducting state (SSS), increase of the current beyond the surface critical current $I_c$ leads to breakdown of SSS and penetration of external magnetic field into the sample bulk. An interesting free-of-bulk system in SSS is offered by thin-walled superconducting cylinders. The critical state model (CSM) asserts the ac susceptibility $chi$ to exhibit jumps as a function of the external ac field amplitude $H_{ac}$, because of the periodic destruction and restoration of SSS in the cylinder wall. Here, we investigate experimentally the low-frequency (128-8192,Hz) ac response of thin-walled superconducting cylinders in superimposed dc and ac magnetic fields applied parallel to the cylinder axis. Distinct from the CSM predictions, experiments reveal that $chi$ is a smooth function of $H_{ac}$. For the explanation of our observations we propose a phenomenological model of partial penetration of magnetic flux (PPMF). The PPMF model implies that after a restoration of the superconducting state, the magnetic fields inside and outside the cylinder are not equal, and the value of the penetrating flux is random for each penetration. This model fits very well to the experimental data on the temperature dependence of the first-harmonic $chi_1$ at any $H_{ac}$ and dc field magnitude. However, in a certain temperature range the values of physical parameters deduced within the framework of the PPMF model are questionable.



rate research

Read More

dc and ac magnetic properties of two thin-walled superconducting Nb cylinders with a rectangular cross-section are reported. Magnetization curves and the ac response were studied on as-prepared and patterned samples in magnetic fields parallel to the cylinder axis. A row of micron-sized antidots (holes) was made in the film along the cylinder axis. Avalanche-like jumps of the magnetization are observed for both samples at low temperatures for magnetic fields not only above $H_{c1}$, but in fields lower than $H_{c1}$ in the vortex-free region. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than $H_{c1}$. At temperatures above $0.66T_c$ and $0.78T_c$ the magnetization curves become smooth for the patterned and the as-prepared samples, respectively. The magnetization curve of a reference planar Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures. The ac response was measured in constant and swept dc magnetic field modes. Experiment shows that ac losses at low magnetic fields in a swept field mode are smaller for the patterned sample. For both samples the shapes of the field dependences of losses and the amplitude of the third harmonic are the same in constant and swept field near $H_{c3}$. This similarity does not exist at low fields in a swept mode.
We describe an experimental protocol to characterize magnetic field dependent microwave losses in superconducting niobium microstrip resonators. Our approach provides a unified view that covers two well-known magnetic field dependent loss mechanisms: quasiparticle generation and vortex motion. We find that quasiparticle generation is the dominant loss mechanism for parallel magnetic fields. For perpendicular fields, the dominant loss mechanism is vortex motion or switches from quasiparticle generation to vortex motion, depending on cooling procedures. In particular, we introduce a plot of the quality factor versus the resonance frequency as a general method for identifying the dominant loss mechanism. We calculate the expected resonance frequency and the quality factor as a function of the magnetic field by modeling the complex resistivity. Key parameters characterizing microwave loss are estimated from comparisons of the observed and expected resonator properties. Based on these key parameters, we find a niobium resonator whose thickness is similar to its penetration depth is the best choice for X-band electron spin resonance applications. Finally, we detect partial release of the Meissner current at the vortex penetration field, suggesting that the interaction between vortices and the Meissner current near the edges is essential to understand the magnetic field dependence of the resonator properties.
62 - Yu.A. Genenko 2003
The problem of calculating the ac losses in a superconductor strip with a transport current placed inside superconducting environments is studied analytically in the frame of the critical state model. Exact results obtained by the method of images for the commonly employed flat ground plates are used to derive power losses and, consequently, the nonlinear resistance depending on the ac frequency, current amplitude and the distance to the ground plates. The resistance is strongly reduced when the distance between the strip and the shields becomes small.
140 - Yu.A. Genenko , H. Rauh 2009
Hysteretic ac losses in a thin, current-carrying superconductor strip located between two flat magnetic shields of infinite permeability are calculated using Beans model of the critical state. For the shields oriented parallel to the plane of the strip, penetration of the self-induced magnetic field is enhanced, and the current dependence of the ac loss resembles that in an isolated superconductor slab, whereas for the shields oriented perpendicular to the plane of the strip, penetration of the self-induced magnetic field is impaired, and the current dependence of the ac loss is similar to that in a superconductor strip flanked by two parallel superconducting shields. Thus, hysteretic ac losses can strongly augment or, respectively, wane when the shields approach the strip.
The superconducting critical temperature (Tc > 15K) of niobium titanium nitride (NbTiN) thin films allows for low-loss circuits up to 1.1 THz, enabling on-chip spectroscopy and multi-pixel imaging with advanced detectors. The drive for large scale detector microchips is demanding NbTiN films with uniform properties over an increasingly larger area. This article provides an experimental comparison between two reactive d.c. sputter systems with different target sizes: a small target (100mm diameter) and a large target (127 mm x 444.5 mm). This article focuses on maximizing the Tc of the films and the accompanying I-V characteristics of the sputter plasma, and we find that both systems are capable of depositing films with Tc > 15 K. The resulting film uniformity is presented in a second manuscript in this volume. We find that these films are deposited within the transition from metallic to compound sputtering, at the point where target nitridation most strongly depends on nitrogen flow. Key in the deposition optimization is to increase the systems pumping speed and gas flows to counteract the hysteretic effects induced by the target size. Using the I-V characteristics as a guide proves to be an effective way to optimize a reactive sputter system, for it can show whether the optimal deposition regime is hysteresis-free and accessible.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا