Do you want to publish a course? Click here

Massively Winning Configurations in the Convex Grabbing Game on the Plane

115   0   0.0 ( 0 )
 Added by Martin Dvorak
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The convex grabbing game is a game where two players, Alice and Bob, alternate taking extremal points from the convex hull of a point set on the plane. Rational weights are given to the points. The goal of each player is to maximize the total weight over all points that they obtain. We restrict the setting to the case of binary weights. We show a construction of an arbitrarily large odd-sized point set that allows Bob to obtain almost 3/4 of the total weight. This construction answers a question asked by Matsumoto, Nakamigawa, and Sakuma in [Graphs and Combinatorics, 36/1 (2020)]. We also present an arbitrarily large even-sized point set where Bob can obtain the entirety of the total weight. Finally, we discuss conjectures about optimum moves in the convex grabbing game for both players in general.



rate research

Read More

We characterize the topological configurations of points and lines that may arise when placing n points on a circle and drawing the n perpendicular bisectors of the sides of the corresponding convex cyclic n-gon. We also provide exact and asymptotic formulas describing a random realizable configuration, obtained either by sampling the points uniformly at random on the circle or by sampling a realizable configuration uniformly at random.
Bimonotone subdivisions in two dimensions are subdivisions all of whose sides are either vertical or have nonnegative slope. They correspond to statistical estimates of probability distributions of strongly positively dependent random variables. The number of bimonotone subdivisions compared to the total number of subdivisions of a point configuration provides insight into how often the random variables are positively dependent. We give recursions as well as formulas for the numbers of bimonotone and total subdivisions of $2times n$ grid configurations in the plane. Furthermore, we connect the former to the large Schroder numbers. We also show that the numbers of bimonotone and total subdivisions of a $2times n$ grid are asymptotically equal. We then provide algorithms for counting bimonotone subdivisions for any $m times n$ grid. Finally, we prove that all bimonotone triangulations of an $m times n$ grid are connected by flips. This gives rise to an algorithm for counting the number of bimonotone (and total) triangulations of an $mtimes n$ grid.
We study a family of variants of ErdH os unit distance problem, concerning distances and dot products between pairs of points chosen from a large finite point set. Specifically, given a large finite set of $n$ points $E$, we look for bounds on how many subsets of $k$ points satisfy a set of relationships between point pairs based on distances or dot products. We survey some of the recent work in the area and present several new, more general families of bounds.
109 - Ramin Naimi , Eric Sundberg 2020
We consider the Maker-Breaker positional game on the vertices of the $n$-dimensional hypercube ${0,1}^n$ with $k$-dimensional subcubes as winning sets. We describe a pairing strategy which allows Breaker to win when $k = n/4 +1$ in the case where $n$ is a power of 4. Our results also imply the general result that there is a Breakers win pairing strategy for any $n geq 3$ if $k = leftlfloorfrac{3}{7}nrightrfloor +1$.
Consider the graph $mathbb{H}(d)$ whose vertex set is the hyperbolic plane, where two points are connected with an edge when their distance is equal to some $d>0$. Asking for the chromatic number of this graph is the hyperbolic analogue to the famous Hadwiger-Nelson problem about colouring the points of the Euclidean plane so that points at distance $1$ receive different colours. As in the Euclidean case, one can lower bound the chromatic number of $mathbb{H}(d)$ by $4$ for all $d$. Using spectral methods, we prove that if the colour classes are measurable, then at least $6$ colours are are needed to properly colour $mathbb{H}(d)$ when $d$ is sufficiently large.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا