Do you want to publish a course? Click here

Lower bounds for the measurable chromatic number of the hyperbolic plane

66   0   0.0 ( 0 )
 Added by Konstantin Golubev
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Consider the graph $mathbb{H}(d)$ whose vertex set is the hyperbolic plane, where two points are connected with an edge when their distance is equal to some $d>0$. Asking for the chromatic number of this graph is the hyperbolic analogue to the famous Hadwiger-Nelson problem about colouring the points of the Euclidean plane so that points at distance $1$ receive different colours. As in the Euclidean case, one can lower bound the chromatic number of $mathbb{H}(d)$ by $4$ for all $d$. Using spectral methods, we prove that if the colour classes are measurable, then at least $6$ colours are are needed to properly colour $mathbb{H}(d)$ when $d$ is sufficiently large.



rate research

Read More

We study colorings of the hyperbolic plane, analogously to the Hadwiger-Nelson problem for the Euclidean plane. The idea is to color points using the minimum number of colors such that no two points at distance exactly $d$ are of the same color. The problem depends on $d$ and, following a strategy of Kloeckner, we show linear upper bounds on the necessary number of colors. In parallel, we study the same problem on $q$-regular trees and show analogous results. For both settings, we also consider a variant which consists in replacing $d$ with an interval of distances.
A vertex $v$ in a porous exponential dominating set assigns weight $left(tfrac{1}{2}right)^{dist(v,u)}$ to vertex $u$. A porous exponential dominating set of a graph $G$ is a subset of $V(G)$ such that every vertex in $V(G)$ has been assigned a sum weight of at least 1. In this paper the porous exponential dominating number, denoted by $gamma_e^*(G)$, for the graph $G = C_m times C_n$ is discussed. Anderson et. al. proved that $frac{mn}{15.875}le gamma_e^*(C_m times C_n) le frac{mn}{13}$ and conjectured that $frac{mn}{13}$ is also the asymptotic lower bound. We use a linear programing approach to sharpen the lower bound to $frac{mn}{13.7619 + epsilon(m,n)}$.
144 - Mikhail Isaev , Mihyun Kang 2021
We determine the asymptotic behaviour of the chromatic number of exchangeable random graphs defined by step-regulated graphons. Furthermore, we show that the upper bound holds for a general graphon. We also extend these results to sparse random graphs obtained by percolations on graphons.
By a finite type-graph we mean a graph whose set of vertices is the set of all $k$-subsets of $[n]={1,2,ldots, n}$ for some integers $nge kge 1$, and in which two such sets are adjacent if and only if they realise a certain order type specified in advance. Examples of such graphs have been investigated in a great variety of contexts in the literature with particular attention being paid to their chromatic number. In recent joint work with Tomasz {L}uczak, two of the authors embarked on a systematic study of the chromatic numbers of such type-graphs, formulated a general conjecture determining this number up to a multiplicative factor, and proved various results of this kind. In this article we fully prove this conjecture.
In 1982, Zaslavsky introduced the concept of a proper vertex colouring of a signed graph $G$ as a mapping $phicolon V(G)to mathbb{Z}$ such that for any two adjacent vertices $u$ and $v$ the colour $phi(u)$ is different from the colour $sigma(uv)phi(v)$, where is $sigma(uv)$ is the sign of the edge $uv$. The substantial part of Zaslavskys research concentrated on polynomial invariants related to signed graph colourings rather than on the behaviour of colourings of individual signed graphs. We continue the study of signed graph colourings by proposing the definition of a chromatic number for signed graphs which provides a natural extension of the chromatic number of an unsigned graph. We establish the basic properties of this invariant, provide bounds in terms of the chromatic number of the underlying unsigned graph, investigate the chromatic number of signed planar graphs, and prove an extension of the celebrated Brooks theorem to signed graphs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا