Do you want to publish a course? Click here

Feedback Nash Equilibria in Differential Games with Impulse Control

152   0   0.0 ( 0 )
 Added by Utsav Sadana
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study a class of deterministic finite-horizon two-player nonzero-sum differential games where players are endowed with different kinds of controls. We assume that Player 1 uses piecewise-continuous controls, while Player 2 uses impulse controls. For this class of games, we seek to derive conditions for the existence of feedback Nash equilibrium strategies for the players. More specifically, we provide a verification theorem for identifying such equilibrium strategies, using the Hamilton-Jacobi-Bellman (HJB) equations for Player 1 and the quasi-variational inequalities (QVIs) for Player 2. Further, we show that the equilibrium number of interventions by Player 2 is upper bounded. Furthermore, we specialize the obtained results to a scalar two-player linear-quadratic differential game. In this game, Player 1s objective is to drive the state variable towards a specific target value, and Player 2 has a similar objective with a different target value. We provide, for the first time, an analytical characterization of the feedback Nash equilibrium in a linear-quadratic differential game with impulse control. We illustrate our results using numerical experiments.



rate research

Read More

This paper shows the existence of $mathcal{O}(frac{1}{n^gamma})$-Nash equilibria in $n$-player noncooperative aggregative games where the players cost functions depend only on their own action and the average of all the players actions, and is lower semicontinuous in the former while $gamma$-H{o}lder continuous in the latter. Neither the action sets nor the cost functions need to be convex. For an important class of aggregative games which includes congestion games with $gamma$ being 1, a proximal best-reply algorithm is used to construct an $mathcal{O}(frac{1}{n})$-Nash equilibria with at most $mathcal{O}(n^3)$ iterations. These results are applied in a numerical example of demand-side management of the electricity system. The asymptotic performance of the algorithm is illustrated when $n$ tends to infinity.
We present the concept of a Generalized Feedback Nash Equilibrium (GFNE) in dynamic games, extending the Feedback Nash Equilibrium concept to games in which players are subject to state and input constraints. We formalize necessary and sufficient conditions for (local) GFNE solutions at the trajectory level, which enable the development of efficient numerical methods for their computation. Specifically, we propose a Newton-style method for finding game trajectories which satisfy the necessary conditions, which can then be checked against the sufficiency conditions. We show that the evaluation of the necessary conditions in general requires computing a series of nested, implicitly-defined derivatives, which quickly becomes intractable. To this end, we introduce an approximation to the necessary conditions which is amenable to efficient evaluation, and in turn, computation of solutions. We term the solutions to the approximate necessary conditions Generalized Feedback Quasi Nash Equilibria (GFQNE), and we introduce numerical methods for their computation. In particular, we develop a Sequential Linear-Quadratic Game approach, in which a locally approximate LQ game is solved at each iteration. The development of this method relies on the ability to compute a GFNE to inequality- and equality-constrained LQ games, and therefore specific methods for the solution of these special cases are developed in detail. We demonstrate the effectiveness of the proposed solution approach on a dynamic game arising in an autonomous driving application.
In this paper we consider non zero-sum games where multiple players control the drift of a process, and their payoffs depend on its ergodic behaviour. We establish their connection with systems of Ergodic BSDEs, and prove the existence of a Nash equilibrium under the generalised Isaacs conditions. We also study the case of interacting players of different type.
146 - Minyi Huang , Xuwei Yang 2021
This paper studies an asymptotic solvability problem for linear quadratic (LQ) mean field games with controlled diffusions and indefinite weights for the state and control in the costs. We employ a rescaling approach to derive a low dimensional Riccati ordinary differential equation (ODE) system, which characterizes a necessary and sufficient condition for asymptotic solvability. The rescaling technique is further used for performance estimates, establishing an $O(1/N)$-Nash equilibrium for the obtained decentralized strategies.
In this paper a distribution-free methodology is presented for providing robustness guarantees for Nash equilibria (NE) of multi-agent games. Leveraging recent a posteriori developments of the so called scenario approach (Campi et al., 2018), we provide probabilistic guarantees for feasibility problems with polytopic constraints. This result is then used in the context of multi-agent games, allowing to provide robustness certificates for constraint violation of any NE of a given game. Our guarantees can be used alongside any NE seeking algorithm that returns some equilibrium solution. Finally, by exploiting the structure of our problem, we circumvent the need of employing computationally prohibitive algorithms to find an irreducible support subsample, a concept at the core of the scenario approach. Our theoretical results are accompanied by simulation studies that investigate the robustness of the solutions of two different problems, namely, a 2-dimensional feasibility problem and an electric vehicle (EV) charging control problem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا