No Arabic abstract
We tackle the problem of learning the geometry of multiple categories of deformable objects jointly. Recent work has shown that it is possible to learn a unified dense pose predictor for several categories of related objects. However, training such models requires to initialize inter-category correspondences by hand. This is suboptimal and the resulting models fail to maintain correct correspondences as individual categories are learned. In this paper, we show that improved correspondences can be learned automatically as a natural byproduct of learning category-specific dense pose predictors. To do this, we express correspondences between different categories and between images and categories using a unified embedding. Then, we use the latter to enforce two constraints: symmetric inter-category cycle consistency and a new asymmetric image-to-category cycle consistency. Without any manual annotations for the inter-category correspondences, we obtain state-of-the-art alignment results, outperforming dedicated methods for matching 3D shapes. Moreover, the new model is also better at the task of dense pose prediction than prior work.
We propose D-RISE, a method for generating visual explanations for the predictions of object detectors. Utilizing the proposed similarity metric that accounts for both localization and categorization aspects of object detection allows our method to produce saliency maps that show image areas that most affect the prediction. D-RISE can be considered black-box in the software testing sense, as it only needs access to the inputs and outputs of an object detector. Compared to gradient-based methods, D-RISE is more general and agnostic to the particular type of object detector being tested, and does not need knowledge of the inner workings of the model. We show that D-RISE can be easily applied to different object detectors including one-stage detectors such as YOLOv3 and two-stage detectors such as Faster-RCNN. We present a detailed analysis of the generated visual explanations to highlight the utilization of context and possible biases learned by object detectors.
With the increasing need of personalised decision making, such as personalised medicine and online recommendations, a growing attention has been paid to the discovery of the context and heterogeneity of causal relationships. Most existing methods, however, assume a known cause (e.g. a new drug) and focus on identifying from data the contexts of heterogeneous effects of the cause (e.g. patient groups with different responses to the new drug). There is no approach to efficiently detecting directly from observational data context specific causal relationships, i.e. discovering the causes and their contexts simultaneously. In this paper, by taking the advantages of highly efficient decision tree induction and the well established causal inference framework, we propose the Tree based Context Causal rule discovery (TCC) method, for efficient exploration of context specific causal relationships from data. Experiments with both synthetic and real world data sets show that TCC can effectively discover context specific causal rules from the data.
Interactions between people are often governed by their relationships. On the flip side, social relationships are built upon several interactions. Two strangers are more likely to greet and introduce themselves while becoming friends over time. We are fascinated by this interplay between interactions and relationships, and believe that it is an important aspect of understanding social situations. In this work, we propose neural models to learn and jointly predict interactions, relationships, and the pair of characters that are involved. We note that interactions are informed by a mixture of visual and dialog cues, and present a multimodal architecture to extract meaningful information from them. Localizing the pair of interacting characters in video is a time-consuming process, instead, we train our model to learn from clip-level weak labels. We evaluate our models on the MovieGraphs dataset and show the impact of modalities, use of longer temporal context for predicting relationships, and achieve encouraging performance using weak labels as compared with ground-truth labels. Code is online.
In this paper, we propose a novel effective non-rigid object tracking framework based on the spatial-temporal consistent saliency detection. In contrast to most existing trackers that utilize a bounding box to specify the tracked target, the proposed framework can extract accurate regions of the target as tracking outputs. It achieves a better description of the non-rigid objects and reduces the background pollution for the tracking model. Furthermore, our model has several unique features. First, a tailored fully convolutional neural network (TFCN) is developed to model the local saliency prior for a given image region, which not only provides the pixel-wise outputs but also integrates the semantic information. Second, a novel multi-scale multi-region mechanism is proposed to generate local saliency maps that effectively consider visual perceptions with different spatial layouts and scale variations. Subsequently, local saliency maps are fused via a weighted entropy method, resulting in a final discriminative saliency map. Finally, we present a non-rigid object tracking algorithm based on the predicted saliency maps. By utilizing a spatial-temporal consistent saliency map (STCSM), we conduct target-background classification and use a simple fine-tuning scheme for online updating. Extensive experiments demonstrate that the proposed algorithm achieves competitive performance in both saliency detection and visual tracking, especially outperforming other related trackers on the non-rigid object tracking datasets.
Vision systems that deploy Deep Neural Networks (DNNs) are known to be vulnerable to adversarial examples. Recent research has shown that checking the intrinsic consistencies in the input data is a promising way to detect adversarial attacks (e.g., by checking the object co-occurrence relationships in complex scenes). However, existing approaches are tied to specific models and do not offer generalizability. Motivated by the observation that language descriptions of natural scene images have already captured the object co-occurrence relationships that can be learned by a language model, we develop a novel approach to perform context consistency checks using such language models. The distinguishing aspect of our approach is that it is independent of the deployed object detector and yet offers very high accuracy in terms of detecting adversarial examples in practical scenes with multiple objects.