Do you want to publish a course? Click here

Multi-level Motion Attention for Human Motion Prediction

124   0   0.0 ( 0 )
 Added by Wei Mao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Human motion prediction aims to forecast future human poses given a historical motion. Whether based on recurrent or feed-forward neural networks, existing learning based methods fail to model the observation that human motion tends to repeat itself, even for complex sports actions and cooking activities. Here, we introduce an attention based feed-forward network that explicitly leverages this observation. In particular, instead of modeling frame-wise attention via pose similarity, we propose to extract motion attention to capture the similarity between the current motion context and the historical motion sub-sequences. In this context, we study the use of different types of attention, computed at joint, body part, and full pose levels. Aggregating the relevant past motions and processing the result with a graph convolutional network allows us to effectively exploit motion patterns from the long-term history to predict the future poses. Our experiments on Human3.6M, AMASS and 3DPW validate the benefits of our approach for both periodical and non-periodical actions. Thanks to our attention model, it yields state-of-the-art results on all three datasets. Our code is available at https://github.com/wei-mao-2019/HisRepItself.



rate research

Read More

Human motion prediction from historical pose sequence is at the core of many applications in machine intelligence. However, in current state-of-the-art methods, the predicted future motion is confined within the same activity. One can neither generate predictions that differ from the current activity, nor manipulate the body parts to explore various future possibilities. Undoubtedly, this greatly limits the usefulness and applicability of motion prediction. In this paper, we propose a generalization of the human motion prediction task in which control parameters can be readily incorporated to adjust the forecasted motion. Our method is compelling in that it enables manipulable motion prediction across activity types and allows customization of the human movement in a variety of fine-grained ways. To this aim, a simple yet effective composite GAN structure, consisting of local GANs for different body parts and aggregated via a global GAN is presented. The local GANs game in lower dimensions, while the global GAN adjusts in high dimensional space to avoid mode collapse. Extensive experiments show that our method outperforms state-of-the-art. The codes are available at https://github.com/herolvkd/AM-GAN.
Human motion prediction aims to forecast future human poses given a sequence of past 3D skeletons. While this problem has recently received increasing attention, it has mostly been tackled for single humans in isolation. In this paper we explore this problem from a novel perspective, involving humans performing collaborative tasks. We assume that the input of our system are two sequences of past skeletons for two interacting persons, and we aim to predict the future motion for each of them. For this purpose, we devise a novel cross interaction attention mechanism that exploits historical information of both persons and learns to predict cross dependencies between self poses and the poses of the other person in spite of their spatial or temporal distance. Since no dataset to train such interactive situations is available, we have captured ExPI (Extreme Pose Interaction), a new lab-based person interaction dataset of professional dancers performing acrobatics. ExPI contains 115 sequences with 30k frames and 60k instances with annotated 3D body poses and shapes. We thoroughly evaluate our cross-interaction network on this dataset and show that both in short-term and long-term predictions, it consistently outperforms baselines that independently reason for each person. We plan to release our code jointly with the dataset and the train/test splits to spur future research on the topic.
Human motion prediction aims to predict future 3D skeletal sequences by giving a limited human motion as inputs. Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough motion trend, but motion details such as limb movement may be lost. To predict more accurate future human motion, we propose an Adversarial Refinement Network (ARNet) following a simple yet effective coarse-to-fine mechanism with novel adversarial error augmentation. Specifically, we take both the historical motion sequences and coarse prediction as input of our cascaded refinement network to predict refined human motion and strengthen the refinement network with adversarial error augmentation. During training, we deliberately introduce the error distribution by learning through the adversarial mechanism among different subjects. In testing, our cascaded refinement network alleviates the prediction error from the coarse predictor resulting in a finer prediction robustly. This adversarial error augmentation provides rich error cases as input to our refinement network, leading to better generalization performance on the testing dataset. We conduct extensive experiments on three standard benchmark datasets and show that our proposed ARNet outperforms other state-of-the-art methods, especially on challenging aperiodic actions in both short-term and long-term predictions.
The task of predicting human motion is complicated by the natural heterogeneity and compositionality of actions, necessitating robustness to distributional shifts as far as out-of-distribution (OoD). Here we formulate a new OoD benchmark based on the Human3.6M and CMU motion capture datasets, and introduce a hybrid framework for hardening discriminative architectures to OoD failure by augmenting them with a generative model. When applied to current state-of-the-art discriminative models, we show that the proposed approach improves OoD robustness without sacrificing in-distribution performance, and can theoretically facilitate model interpretability. We suggest human motion predictors ought to be constructed with OoD challenges in mind, and provide an extensible general framework for hardening diverse discriminative architectures to extreme distributional shift. The code is available at https://github.com/bouracha/OoDMotion.
159 - Yongyi Tang , Lin Ma , Wei Liu 2018
Human motion prediction aims at generating future frames of human motion based on an observed sequence of skeletons. Recent methods employ the latest hidden states of a recurrent neural network (RNN) to encode the historical skeletons, which can only address short-term prediction. In this work, we propose a motion context modeling by summarizing the historical human motion with respect to the current prediction. A modified highway unit (MHU) is proposed for efficiently eliminating motionless joints and estimating next pose given the motion context. Furthermore, we enhance the motion dynamic by minimizing the gram matrix loss for long-term motion prediction. Experimental results show that the proposed model can promisingly forecast the human future movements, which yields superior performances over related state-of-the-art approaches. Moreover, specifying the motion context with the activity labels enables our model to perform human motion transfer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا