Do you want to publish a course? Click here

La-$X$-H hydrides: is hot superconductivity possible?

67   0   0.0 ( 0 )
 Added by Simone Di Cataldo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by the recent claim of hot superconductivity with critical temperatures up to 550 K in La + x hydrides (arXiv:2006.03004), we investigate the high-pressure phase diagram of possible compounds that may have formed in the experiment, using first-principles calculations for evolutionary crystal structure prediction and superconductivity. Starting from the hypothesis that the observed T$_c$ may be realized by successive heating upon a pre-formed LaH$_{10}$ phase, we examine plausible ternaries of lanthanum, hydrogen and other elements present in the diamond anvil cell: boron, nitrogen, carbon, platinum, gallium, gold. We find that only boron forms superhydride-like structures that can host high-Tc superconductivity, but the predicted Tc are incompatibe with the experimental reports. Our results indicate that, while the claims of hot superconductivity should be reconsidered, it is very likely that unkwown H-rich ternary or multinary phases containing lanthanum, boron and hydrogen may have formed under the reported experimental conditions, and that these may exhibit superconducting properties comparable, or even superior, to those of currently known hydrides.



rate research

Read More

With the motivation of discovering high-temperature superconductors, evolutionary algorithm is employed to search for all stable compounds in the Sn-H system. In addition to the traditional SnH$_4$, new hydrides SnH$_8$, SnH$_{12}$ and SnH$_{14}$ are found to be thermodynamically stable at high pressure. Dynamical stability and superconductivity of tin-hydrides are systematically investigated. I$bar{4}$m2-SnH$_8$, C2/m-SnH$_{12}$ and C2/m-SnH$_{14}$ exhibit higher superconducting transition temperatures of 81, 93 and 97 K compared to the traditional compound SnH$_4$ with T$_c$ of 52 K at 200 GPa. An interesting bent H$_3^-$ in I$bar{4}$m2-SnH$_8$ and novel liner H$_4^-$ in C2/m-SnH$_{12}$ are observed. All the new tin-hydrides remain metallic over their predicted range of stability. The intermediate-frequency wagging and bending vibrations have more contribution to electron-phonon coupling parameter than high-frequency stretching vibrations of H$_2$ and H$_3$.
82 - Yundi Quan , Soham S. Ghosh , 2019
The 2014-2015 prediction, discovery, and confirmation of record high temperature superconductivity above 200K in H$_3$S, followed by the 2018 extension to superconductivity in the 250-280K range in lanthanum hydride, marks a new era in the longstanding quest for room temperature superconductivity: quest achieved, at the cost of supplying 1.5-2 megabars of pressure. Predictions of numerous high temperature superconducting metal hydrides $XH_n$ ($X$=metal) have appeared, but are providing limited understanding of what drives the high transition temperature T$_c$, or what limits T$_c$. We apply an opportunistic atomic decomposition of the coupling function to show, first, that the $X$ atom provides coupling strength as commonly calculated, but is it irrelevant for superconductivity; in fact, it is important for analysis that its contribution is neglected. Five $X$H$_n$ compounds, predicted to have T$_c$ in the 150-300K range, are analyzed consistently for their relevant properties, revealing some aspects that confront conventional wisdom. A phonon frequency -- critical temperature ($omega_2$-T$_c$) phase diagram is obtained that reveals a common phase instability limiting T$_c$ at the {it low pressure} range of each compound. The hydrogen scattering strength is identified and found to differ strongly over the hydrides. A quantity directly proportional to T$_c$ in these hydrides is identified.
Using the data on the superconducting critical temperature ($T_{C}$) for a number of metal hydrides, we found a rule that makes it possible to predict the maximum $T_{C}$ based only on the information about the electronic structure of metal atoms. Using this guiding principle, we explored the hydride systems for which no reliable information existed, predicted new higher hydrides in the K-H, Zr-H, Hf-H, Ti-H, Mg-H, Sr-H, Ba-H, Cs-H, and Rb-H systems at high pressures, and calculated their $T_{C}$. Results of the study of actinides and lanthanides show that they form highly symmetric superhydrides $XH_{7-9}$. However, actinide hydrides do not exhibit high-temperature superconductivity (except Th-H system) and might not be considered as promising materials for experimental studies, as well as all $d^m$-elements with m > 4, including metal hydrides of the noble elements. Designed neural network allowing the prediction of $T_{C}$ of various hydrides shows good accuracy and was used to estimate upper limit for $T_{C}$ of the materials with absence of the data. The developed rule, based on regular behavior of the maximum achievable critical temperature as a function of number of $d+f$ electrons, enables targeted predictions about the existence of new high-$T_{C}$ superconductors.
130 - J.E. Hirsch , F. Marsiglio 2020
The long-sought goal of room-temperature superconductivity has reportedly recently been realized in a carbonaceous sulfur hydride compound under high pressure, as reported by Snider et al. [1]. The evidence presented in that paper is stronger than in other similar recent reports of high temperature superconductivity in hydrides under high pressure [2-7], and has been received with universal acclaim [8-10]. Here we point out that features of the experimental data shown in Ref. [1] indicate that the phenomenon observed in that material is not superconductivity. This observation calls into question earlier similar claims of high temperature conventional superconductivity in hydrides under high pressure based on similar or weaker evidence [2-7].
Polyhydrides offer intriguing perspectives as high-temperature superconductors. Here we report the high-pressure synthesis of a series of lanthanum-yttrium ternary hydrides: cubic hexahydride $(La,Y)H_{6}$ with a critical temperature $T_{C}$ = 237 +/- 5 K and decahydrides $(La,Y)H_{10}$ with a maximum $T_{C}$ ~${253 K}$ and an extrapolated upper critical magnetic field $B_{C2(0)}$ up to ${135 T}$ at 183 GPa. This is one of the first examples of ternary high-$T_{C}$ superconducting hydrides. Our experiments show that a part of the atoms in the structures of recently discovered ${Im3m}$-$YH_{6}$ and ${Fm3m}$-$LaH_{10}$ can be replaced with lanthanum (~70 %) and yttrium (~25 %), respectively, with a formation of unique ternary superhydrides containing incorporated $La@H_{24}$ and $Y@H_{32}$ which are specific for ${Im3m}$-$LaH_{6}$ and ${Fm3m}$-$YH_{10}$. Ternary La-Y hydrides were obtained at pressures of 170-196 GPa via the laser heating of $P6_{3}$${/mmc}$ lanthanum-yttrium alloys in the ammonia borane medium at temperatures above 2000 K. A novel tetragonal $(La,Y)H_{4}$ was discovered as an impurity phase in synthesized cubic $(La,Y)H_{6}$. The current-voltage measurements show that the critical current density $J_{C}$ in $(La,Y)H_{10}$ may exceed $2500 A/mm^{2}$ at 4.2 K, which is comparable with that for commercial superconducting wires such as ${NbTi}$, $Nb_{3}$${Sn}$. Hydrides that are unstable in a pure form may nevertheless be stabilized at relatively low pressures in solid solutions with superhydrides having the same structure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا