No Arabic abstract
High-resolution representations (HR) are essential for dense prediction tasks such as segmentation, detection, and pose estimation. Learning HR representations is typically ignored in previous Neural Architecture Search (NAS) methods that focus on image classification. This work proposes a novel NAS method, called HR-NAS, which is able to find efficient and accurate networks for different tasks, by effectively encoding multiscale contextual information while maintaining high-resolution representations. In HR-NAS, we renovate the NAS search space as well as its searching strategy. To better encode multiscale image contexts in the search space of HR-NAS, we first carefully design a lightweight transformer, whose computational complexity can be dynamically changed with respect to different objective functions and computation budgets. To maintain high-resolution representations of the learned networks, HR-NAS adopts a multi-branch architecture that provides convolutional encoding of multiple feature resolutions, inspired by HRNet. Last, we proposed an efficient fine-grained search strategy to train HR-NAS, which effectively explores the search space, and finds optimal architectures given various tasks and computation resources. HR-NAS is capable of achieving state-of-the-art trade-offs between performance and FLOPs for three dense prediction tasks and an image classification task, given only small computational budgets. For example, HR-NAS surpasses SqueezeNAS that is specially designed for semantic segmentation while improving efficiency by 45.9%. Code is available at https://github.com/dingmyu/HR-NAS
Self-driving cars need to understand 3D scenes efficiently and accurately in order to drive safely. Given the limited hardware resources, existing 3D perception models are not able to recognize small instances (e.g., pedestrians, cyclists) very well due to the low-resolution voxelization and aggressive downsampling. To this end, we propose Sparse Point-Voxel Convolution (SPVConv), a lightweight 3D module that equips the vanilla Sparse Convolution with the high-resolution point-based branch. With negligible overhead, this point-based branch is able to preserve the fine details even from large outdoor scenes. To explore the spectrum of efficient 3D models, we first define a flexible architecture design space based on SPVConv, and we then present 3D Neural Architecture Search (3D-NAS) to search the optimal network architecture over this diverse design space efficiently and effectively. Experimental results validate that the resulting SPVNAS model is fast and accurate: it outperforms the state-of-the-art MinkowskiNet by 3.3%, ranking 1st on the competitive SemanticKITTI leaderboard. It also achieves 8x computation reduction and 3x measured speedup over MinkowskiNet with higher accuracy. Finally, we transfer our method to 3D object detection, and it achieves consistent improvements over the one-stage detection baseline on KITTI.
Vision Transformer (ViT) demonstrates that Transformer for natural language processing can be applied to computer vision tasks and result in comparable performance to convolutional neural networks (CNN), which have been studied and adopted in computer vision for years. This naturally raises the question of how the performance of ViT can be advanced with design techniques of CNN. To this end, we propose to incorporate two techniques and present ViT-ResNAS, an efficient multi-stage ViT architecture designed with neural architecture search (NAS). First, we propose residual spatial reduction to decrease sequence lengths for deeper layers and utilize a multi-stage architecture. When reducing lengths, we add skip connections to improve performance and stabilize training deeper networks. Second, we propose weight-sharing NAS with multi-architectural sampling. We enlarge a network and utilize its sub-networks to define a search space. A super-network covering all sub-networks is then trained for fast evaluation of their performance. To efficiently train the super-network, we propose to sample and train multiple sub-networks with one forward-backward pass. After that, evolutionary search is performed to discover high-performance network architectures. Experiments on ImageNet demonstrate that ViT-ResNAS achieves better accuracy-MACs and accuracy-throughput trade-offs than the original DeiT and other strong baselines of ViT. Code is available at https://github.com/yilunliao/vit-search.
The design of neural network architectures is an important component for achieving state-of-the-art performance with machine learning systems across a broad array of tasks. Much work has endeavored to design and build architectures automatically through clever construction of a search space paired with simple learning algorithms. Recent progress has demonstrated that such meta-learning methods may exceed scalable human-invented architectures on image classification tasks. An open question is the degree to which such methods may generalize to new domains. In this work we explore the construction of meta-learning techniques for dense image prediction focused on the tasks of scene parsing, person-part segmentation, and semantic image segmentation. Constructing viable search spaces in this domain is challenging because of the multi-scale representation of visual information and the necessity to operate on high resolution imagery. Based on a survey of techniques in dense image prediction, we construct a recursive search space and demonstrate that even with efficient random search, we can identify architectures that outperform human-invented architectures and achieve state-of-the-art performance on three dense prediction tasks including 82.7% on Cityscapes (street scene parsing), 71.3% on PASCAL-Person-Part (person-part segmentation), and 87.9% on PASCAL VOC 2012 (semantic image segmentation). Additionally, the resulting architecture is more computationally efficient, requiring half the parameters and half the computational cost as previous state of the art systems.
Efficient search is a core issue in Neural Architecture Search (NAS). It is difficult for conventional NAS algorithms to directly search the architectures on large-scale tasks like ImageNet. In general, the cost of GPU hours for NAS grows with regard to training dataset size and candidate set size. One common way is searching on a smaller proxy dataset (e.g., CIFAR-10) and then transferring to the target task (e.g., ImageNet). These architectures optimized on proxy data are not guaranteed to be optimal on the target task. Another common way is learning with a smaller candidate set, which may require expert knowledge and indeed betrays the essence of NAS. In this paper, we present DA-NAS that can directly search the architecture for large-scale target tasks while allowing a large candidate set in a more efficient manner. Our method is based on an interesting observation that the learning speed for blocks in deep neural networks is related to the difficulty of recognizing distinct categories. We carefully design a progressive data adapted pruning strategy for efficient architecture search. It will quickly trim low performed blocks on a subset of target dataset (e.g., easy classes), and then gradually find the best blocks on the whole target dataset. At this time, the original candidate set becomes as compact as possible, providing a faster search in the target task. Experiments on ImageNet verify the effectiveness of our approach. It is 2x faster than previous methods while the accuracy is currently state-of-the-art, at 76.2% under small FLOPs constraint. It supports an argument search space (i.e., more candidate blocks) to efficiently search the best-performing architecture.
We present an efficient high-resolution network, Lite-HRNet, for human pose estimation. We start by simply applying the efficient shuffle block in ShuffleNet to HRNet (high-resolution network), yielding stronger performance over popular lightweight networks, such as MobileNet, ShuffleNet, and Small HRNet. We find that the heavily-used pointwise (1x1) convolutions in shuffle blocks become the computational bottleneck. We introduce a lightweight unit, conditional channel weighting, to replace costly pointwise (1x1) convolutions in shuffle blocks. The complexity of channel weighting is linear w.r.t the number of channels and lower than the quadratic time complexity for pointwise convolutions. Our solution learns the weights from all the channels and over multiple resolutions that are readily available in the parallel branches in HRNet. It uses the weights as the bridge to exchange information across channels and resolutions, compensating the role played by the pointwise (1x1) convolution. Lite-HRNet demonstrates superior results on human pose estimation over popular lightweight networks. Moreover, Lite-HRNet can be easily applied to semantic segmentation task in the same lightweight manner. The code and models have been publicly available at https://github.com/HRNet/Lite-HRNet.