No Arabic abstract
The collective spin and charge excitations of doped cuprates and their relationship to superconductivity are not yet fully understood, particularly in the case of the charge excitations. Here, we study the doping-dependent dynamical spin and charge structure factors of single and multi-orbital models for the one-dimensional corner shared spin-chain cuprates using several numerically exact methods. We find that the singleband Hubbard model can describe the spin and charge excitations of the $pd$-model in the low-energy region, including the particle-hole asymmetry in the spin response. However, our results also reveal that the weight of the interorbital spin excitations between Cu and O orbitals is comparable to the weight of the spin excitations between two Cu orbitals. This finding elucidates the microscopic nature of the spin excitations in the 1D cuprates and sheds light on the spin properties of other oxides. Importantly, we find a particle-hole asymmetry in the orbital-resolved charge excitations, which cannot be described by the singleband Hubbard model and is relevant to resonant inelastic x-ray scattering experiments. Our results imply that the explicit inclusion of the oxygen degrees of freedom may be required to understand experimental observations.
In this paper we examine the effects of electron-hole asymmetry as a consequence of strong correlations on the electronic Raman scattering in the normal state of copper oxide high temperature superconductors. Using determinant quantum Monte Carlo simulations of the single-band Hubbard model, we construct the electronic Raman response from single particle Greens functions and explore the differences in the spectra for electron and hole doping away from half filling. The theoretical results are compared to new and existing Raman scattering experiments on hole-doped La$_{2-x}$Sr$_{x}$CuO$_{4}$ and electron-doped Nd$_{2-x}$Ce$_{x}$CuO$_{4}$. These findings suggest that the Hubbard model with fixed interaction strength qualitatively captures the doping and temperature dependence of the Raman spectra for both electron and hole doped systems, indicating that the Hubbard parameter U does not need to be doping dependent to capture the essence of this asymmetry.
The three-band model relevant to high temperature copper-oxide superconductors is solved using single-site dynamical mean field theory and a tight-binding parametrization of the copper and oxygen bands. For a band filling of one hole per unit cell the metal/charge-transfer-insulator phase diagram is determined. The electron spectral function, optical conductivity and quasiparticle mass enhancement are computed as functions of electron and hole doping for parameters such that the corresponding to the paramagnetic metal and charge-transfer insulator sides of the one hole per cell phase diagram. The optical conductivity is computed using the Peierls phase approximation for the optical matrix elements. The calculation includes the physics of Zhang-Rice singlets. The effects of antiferromagnetism on the magnitude of the gap and the relation between correlation strength and doping-induced changes in state density are determined. Three band and one band models are compared. The two models are found to yield quantitatively consistent results for all energies less than about 4eV, including energies in the vicinity of the charge-transfer gap. Parameters on the insulating side of the metal/charge-transfer insulator phase boundary lead to gaps which are too large and near-gap conductivities which are too small relative to data. The results place the cuprates clearly in the intermediate correlation regime, on the paramagnetic metal side of the metal/charge-transfer insulator phase boundary.
We use a recently developed extension of the weak coupling diagrammatic determinantal quantum Monte Carlo method to investigate the spin, charge and single particle spectral functions of the one-dimensional quarter-filled Holstein model with phonon frequency $omega_0 = 0.1 t$. As a function of the dimensionless electron-phonon coupling we observe a transition from a Luttinger to a Luther-Emery liquid with dominant $2k_f$ charge fluctuations. Emphasis is placed on the temperature dependence of the single particle spectral function. At high temperatures and in both phases it is well accounted for within a self-consistent Born approximation. In the low temperature Luttinger liquid phase we observe features which compare favorably with a bosonization approach retaining only forward scattering. In the Luther-Emery phase, the spectral function at low temperatures shows a quasiparticle gap which matches half the spin gap whereas at temperatures above which this quasiparticle gap closes, characteristic features of the Luttinger liquid model are apparent. Our results are based on lattice simulations on chains up to L=20 for two-particle properties and on CDMFT calculations with clusters up to 12 sites for the single-particle spectral function.
We present a numerical study of the charge dynamical structure factor N(k,omega) of a one-dimensional (1D) ionic Hubbard model in the Mott insulator phase. We show that the low-energy spectrum of N(k,omega) is expressed in terms of the spin operators for the spin degrees of freedom. Numerical results of N(k,omega) for the spin degrees of freedom, obtained by the Lanczos diagonalization method, well reproduce the low-energy spectrum of N(k,omega) of the 1D ionic Hubbard model. In addition, we show that these spectral peaks probe the dispersion of the spin-singlet excitations of the system and are observed in the wide parameter region of the MI phase.
We identify dd-excitations in the quasi-one dimensional compound Ca$_2$Y$_2$Cu$_5$O$_{10}$ using resonant inelastic x-ray scattering. By tuning across the Cu L$_3$-edge, we observe abrupt shifts in the dd-peak positions as a function of incident photon energy. This observation demonstrates orbital-specific coupling of the high-energy excited states of the system to the low-energy degrees of freedom. A Franck-Condon treatment of electron-lattice coupling, consistent with other measurements in this compound, reproduces these shifts, explains the Gaussian lineshapes, and highlights charge-orbital-lattice renormalization in the high energy d-manifold.