Do you want to publish a course? Click here

Non-Abelian Hybrid Fracton Orders

124   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce lattice gauge theories which describe three-dimensional, gapped quantum phases exhibiting the phenomenology of both conventional three-dimensional topological orders and fracton orders, starting from a finite group $G$, a choice of an Abelian normal subgroup $N$, and a choice of foliation structure. These hybrid fracton orders -- examples of which were introduced in arXiv:2102.09555 -- can also host immobile, point-like excitations that are non-Abelian, and therefore give rise to a protected degeneracy. We construct solvable lattice models for these orders which interpolate between a conventional, three-dimensional $G$ gauge theory and a pure fracton order, by varying the choice of normal subgroup $N$. We demonstrate that certain universal data of the topological excitations and their mobilities are directly related to the choice of $G$ and $N$, and also present complementary perspectives on these orders: certain orders may be obtained by gauging a global symmetry which enriches a particular fracton order, by either fractionalizing on or permuting the excitations with restricted mobility, while certain hybrid orders can be obtained by condensing excitations in a stack of initially decoupled, two-dimensional topological orders.



rate research

Read More

Fracton topological order (FTO) is a new classification of correlated phases in three spatial dimensions with topological ground state degeneracy (GSD) scaling up with system size, and fractional excitations which are immobile or have restricted mobility. With the topological origin of GSD, FTO is immune to local perturbations, whereas a strong enough global external perturbation is expected to break the order. The critical point of the topological transition is however very challenging to identify. In this work, we propose to characterize quantum phase transition of the type-I FTOs induced by external terms and develop a theory to study analytically the critical point of the transition. In particular, for the external perturbation term creating lineon-type excitations, we predict a generic formula for the critical point of the quantum phase transition, characterized by the breaking-down of GSD. This theory applies to a board class of FTOs, including X-cube model, and for more generic FTO models under perturbations creating two-dimensional (2D) or 3D excitations, we predict the upper and lower limits of the critical point. Our work makes a step in characterizing analytically the quantum phase transition of generic fracton orders.
335 - Yi-Ting Tu , Po-Yao Chang 2021
We demonstrate a general gauging procedure of a pure matter theory on a lattice with a mixture of subsystem and global symmetries. This mixed symmetry can be either a semidirect product of a subsystem symmetry and a global symmetry, or a non-trivial extension of them. We demonstrate this gauging procedure on a cubic lattice in three dimensions with four examples: $G=mathbb{Z}_3^{text{sub}} rtimes mathbb{Z}_2^{text{glo}}$, $G=(mathbb{Z}_2^{text{sub}} times mathbb{Z}_2^{text{sub}}) rtimes mathbb{Z}_2^{text{glo}}$, $1to mathbb {Z}_2^text {sub}to Gto mathbb {Z}_2^text {glo}to 1$, and $1to mathbb {Z}_2^text {sub}to Gto K_4^text {glo}to 1$. The former two cases and the last one produce the non-Abelian fracton orders. Our construction of the gauging procedure provides an identification of the electric charges of these fracton orders with irreducible representations of the symmetry. Furthermore, by constraining the local Hilbert space, the magnetic fluxes with different geometry (tube-like and plaquette-like) satisfy a subalgebra of the quantum double models (QDMs). This algebraic structure leads to an identification of the magnetic fluxes to the conjugacy classes of the symmetry.
We propose a unified scheme to identify phase transitions out of the $mathbb{Z}_2$ Abelian topological order, including the transition to a non-Abelian chiral spin liquid. Using loop gas and and string gas states [H.-Y. Lee, R. Kaneko, T. Okubo, N. Kawashima, Phys. Rev. Lett. 123, 087203 (2019)] on the star lattice Kitaev model as an example, we compute the overlap of minimally entangled states through transfer matrices. We demonstrate that, similar to the anyon condensation, continuous deformation of a $mathbb{Z}_2$-injective projected entangled-pair state (PEPS) also allows us to study the transition between Abelian and non-Abelian topological orders. We show that the charge and flux anyons defined in the Abelian phase transmute into the $sigma$ anyon in the non-Abelian topological order. Furthermore, we show that contrary to the claim in [Phys. Rev. B 101, 035140 (2020)], both the LG and SG states have infinite correlation length in the non-Abelian regime, consistent with the no-go theorem that a chiral PEPS has a gapless parent Hamiltonian.
The Lieb-Schultz-Mattis (LSM) theorem implies that gapped phases of matter must satisfy non-trivial conditions on their low-energy properties when a combination of lattice translation and $U(1)$ symmetry are imposed. We describe a framework to characterize the action of symmetry on fractons and other sub-dimensional fractional excitations, and use this together with the LSM theorem to establish that X-cube fracton order can occur only at integer or half-odd-integer filling. Using explicit parton constructions, we demonstrate that odd
121 - Wilbur Shirley , Kevin Slagle , 2018
Fractional excitations in fracton models exhibit novel features not present in conventional topological phases: their mobility is constrained, there are an infinitude of types, and they bear an exotic sense of braiding. Hence, they require a new framework for proper characterization. Based on our definition of foliated fracton phases in which equivalence between models includes the possibility of adding layers of gapped 2D states, we propose to characterize fractional excitations in these phases up to the addition of quasiparticles with 2D mobility. That is, two quasiparticles differing by a set of quasiparticles that move along 2D planes are considered to be equivalent; likewise, braiding statistics are measured in a way that is insensitive to the attachment of 2D quasiparticles. The fractional excitation types and statistics defined in this way provide a universal characterization of the underlying foliated fracton order which can subsequently be used to establish phase relations. We demonstrate as an example the equivalence between the X-cube model and the semionic X-cube model both in terms of fractional excitations and through an exact mapping.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا