Do you want to publish a course? Click here

Detecting transition between Abelian and non-Abelian topological orders through symmetric tensor networks

100   0   0.0 ( 0 )
 Added by Ying-Jer Kao
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a unified scheme to identify phase transitions out of the $mathbb{Z}_2$ Abelian topological order, including the transition to a non-Abelian chiral spin liquid. Using loop gas and and string gas states [H.-Y. Lee, R. Kaneko, T. Okubo, N. Kawashima, Phys. Rev. Lett. 123, 087203 (2019)] on the star lattice Kitaev model as an example, we compute the overlap of minimally entangled states through transfer matrices. We demonstrate that, similar to the anyon condensation, continuous deformation of a $mathbb{Z}_2$-injective projected entangled-pair state (PEPS) also allows us to study the transition between Abelian and non-Abelian topological orders. We show that the charge and flux anyons defined in the Abelian phase transmute into the $sigma$ anyon in the non-Abelian topological order. Furthermore, we show that contrary to the claim in [Phys. Rev. B 101, 035140 (2020)], both the LG and SG states have infinite correlation length in the non-Abelian regime, consistent with the no-go theorem that a chiral PEPS has a gapless parent Hamiltonian.



rate research

Read More

We introduce lattice gauge theories which describe three-dimensional, gapped quantum phases exhibiting the phenomenology of both conventional three-dimensional topological orders and fracton orders, starting from a finite group $G$, a choice of an Abelian normal subgroup $N$, and a choice of foliation structure. These hybrid fracton orders -- examples of which were introduced in arXiv:2102.09555 -- can also host immobile, point-like excitations that are non-Abelian, and therefore give rise to a protected degeneracy. We construct solvable lattice models for these orders which interpolate between a conventional, three-dimensional $G$ gauge theory and a pure fracton order, by varying the choice of normal subgroup $N$. We demonstrate that certain universal data of the topological excitations and their mobilities are directly related to the choice of $G$ and $N$, and also present complementary perspectives on these orders: certain orders may be obtained by gauging a global symmetry which enriches a particular fracton order, by either fractionalizing on or permuting the excitations with restricted mobility, while certain hybrid orders can be obtained by condensing excitations in a stack of initially decoupled, two-dimensional topological orders.
The topological order is equivalent to the pattern of long-range quantum entanglements, which cannot be measured by any local observable. Here we perform an exact diagonalization study to establish the non-Abelian topological order through entanglement entropy measurement. We focus on the quasiparticle statistics of the non-Abelian Moore-Read and Read-Rezayi states on the lattice boson models. We identify multiple independent minimal entangled states (MESs) in the groundstate manifold on a torus. The extracted modular $mathcal{S}$ matrix from MESs faithfully demonstrates the Majorana quasiparticle or Fibonacci quasiparticle statistics, including the quasiparticle quantum dimensions and the fusion rules for such systems. These findings support that MESs manifest the eigenstates of quasiparticles for the non-Abelian topological states and encode the full information of the topological order.
We provide new insights into the Abelian and non-Abelian chiral Kitaev spin liquids on the star lattice using the recently proposed loop gas (LG) and string gas (SG) states [H.-Y. Lee, R. Kaneko, T. Okubo, N. Kawashima, Phys. Rev. Lett. 123, 087203 (2019)]. Those are compactly represented in the language of tensor network. By optimizing only one or two variational parameters, accurate ansatze are found in the whole phase diagram of the Kitaev model on the star lattice. In particular, the variational energy of the LG state becomes exact(within machine precision) at two limits in the model, and the criticality at one of those is analytically derived from the LG feature. It reveals that the Abelian CSLs are well demonstrated by the short-ranged LG while the non-Abelian CSLs are adiabatically connected to the critical LG where the macroscopic loops appear. Furthermore, by constructing the minimally entangled states and exploiting their entanglement spectrum and entropy, we identify the nature of anyons and the chiral edge modes in the non-Abelian phase with the Ising conformal field theory.
We study quantum phase transitions between competing orders in one-dimensional spin systems. We focus on systems that can be mapped to a dual-field double sine-Gordon model as a bosonized effective field theory. This model contains two pinning potential terms of dual fields that stabilize competing orders and allows different types of quantum phase transition to happen between two ordered phases. At the transition point, elementary excitations change from the topological soliton of one of the dual fields to that of the other, thus it can be characterized as a topological transition. We compute the dynamical susceptibilities and the entanglement entropy, which gives us access to the central charge, of the system using a numerical technique of infinite time-evolving block decimation and characterize the universality class of the transition as well as the nature of the order in each phase. The possible realizations of such transitions in experimental systems both for condensed matter and cold atomic gases are also discussed.
Topological phases exhibit unconventional order that cannot be detected by any local order parameter. In the framework of Projected Entangled Pair States(PEPS), topological order is characterized by an entanglement symmetry of the local tensor which describes the model. This symmetry can take the form of a tensor product of group representations, or in the more general case a correlated symmetry action in the form of a Matrix Product Operator(MPO), which encompasses all string-net models. Among other things, these entanglement symmetries allow for the description of ground states and anyon excitations. Recently, the idea has been put forward to use those symmetries and the anyonic objects they describe as order parameters for probing topological phase transitions, and the applicability of this idea has been demonstrated for Abelian groups. In this paper, we extend this construction to the domain of non-Abelian models with MPO symmetries, and use it to study the breakdown of topological order in the double Fibonacci (DFib) string-net and its Galois conjugate, the non-hermitian double Yang-Lee (DYL) string-net. We start by showing how to construct topological order parameters for condensation and deconfinement of anyons using the MPO symmetries. Subsequently, we set up interpolations from the DFib and the DYL model to the trivial phase, and show that these can be mapped to certain restricted solid on solid(RSOS) models, which are equivalent to the $((5pmsqrt{5})/2)$-state Potts model, respectively. The known exact solutions of the statistical models allow us to locate the critical points, and to predict the critical exponents for the order parameters. We complement this by numerical study of the phase transitions, which fully confirms our theoretical predictions; remarkably, we find that both models exhibit a duality between the order parameters for condensation and deconfinement.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا