Do you want to publish a course? Click here

A multivariate Gaussian random field prior against spatial confounding

52   0   0.0 ( 0 )
 Added by Isa Marques
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Spatial models are used in a variety research areas, such as environmental sciences, epidemiology, or physics. A common phenomenon in many spatial regression models is spatial confounding. This phenomenon takes place when spatially indexed covariates modeling the mean of the response are correlated with the spatial random effect. As a result, estimates for regression coefficients of the covariates can be severely biased and interpretation of these is no longer valid. Recent literature has shown that typical solutions for reducing spatial confounding can lead to misleading and counterintuitive results. In this paper, we develop a computationally efficient spatial model in a Bayesian framework integrating novel prior structure that reduces spatial confounding. Starting from the univariate case, we extend our prior structure to case of multiple spatially confounded covariates. In a simulation study, we show that our novel model flexibly detects and reduces spatial confounding in spatial datasets, and it performs better than typically used methods such as restricted spatial regression. These results are promising for any applied researcher who wishes to interpret covariate effects in spatial regression models. As a real data illustration, we study the effect of elevation and temperature on the mean of daily precipitation in Germany.



rate research

Read More

Adjusting for an unmeasured confounder is generally an intractable problem, but in the spatial setting it may be possible under certain conditions. In this paper, we derive necessary conditions on the coherence between the treatment variable of interest and the unmeasured confounder that ensure the causal effect of the treatment is estimable. We specify our model and assumptions in the spectral domain to allow for different degrees of confounding at different spatial resolutions. The key assumption that ensures identifiability is that confounding present at global scales dissipates at local scales. We show that this assumption in the spectral domain is equivalent to adjusting for global-scale confounding in the spatial domain by adding a spatially smoothed version of the treatment variable to the mean of the response variable. Within this general framework, we propose a sequence of confounder adjustment methods that range from parametric adjustments based on the Matern coherence function to more robust semi-parametric methods that use smoothing splines. These ideas are applied to areal and geostatistical data for both simulated and real datasets
We study the problem of sparse signal detection on a spatial domain. We propose a novel approach to model continuous signals that are sparse and piecewise smooth as product of independent Gaussian processes (PING) with a smooth covariance kernel. The smoothness of the PING process is ensured by the smoothness of the covariance kernels of Gaussian components in the product, and sparsity is controlled by the number of components. The bivariate kurtosis of the PING process shows more components in the product results in thicker tail and sharper peak at zero. The simulation results demonstrate the improvement in estimation using the PING prior over Gaussian process (GP) prior for different image regressions. We apply our method to a longitudinal MRI dataset to detect the regions that are affected by multiple sclerosis (MS) in the greatest magnitude through an image-on-scalar regression model. Due to huge dimensionality of these images, we transform the data into the spectral domain and develop methods to conduct computation in this domain. In our MS imaging study, the estimates from the PING model are more informative than those from the GP model.
In this article, we consider a non-parametric Bayesian approach to multivariate quantile regression. The collection of related conditional distributions of a response vector Y given a univariate covariate X is modeled using a Dependent Dirichlet Process (DDP) prior. The DDP is used to introduce dependence across x. As the realizations from a Dirichlet process prior are almost surely discrete, we need to convolve it with a kernel. To model the error distribution as flexibly as possible, we use a countable mixture of multidimensional normal distributions as our kernel. For posterior computations, we use a truncated stick-breaking representation of the DDP. This approximation enables us to deal with only a finitely number of parameters. We use a Block Gibbs sampler for estimating the model parameters. We illustrate our method with simulation studies and real data applications. Finally, we provide a theoretical justification for the proposed method through posterior consistency. Our proposed procedure is new even when the response is univariate.
In this paper, a Bayesian semiparametric copula approach is used to model the underlying multivariate distribution $F_{true}$. First, the Dirichlet process is constructed on the unknown marginal distributions of $F_{true}$. Then a Gaussian copula model is utilized to capture the dependence structure of $F_{true}$. As a result, a Bayesian multivariate normality test is developed by combining the relative belief ratio and the Energy distance. Several interesting theoretical results of the approach are derived. Finally, through several simulated examples and a real data set, the proposed approach reveals excellent performance.
In employing spatial regression models for counts, we usually meet two issues. First, ignoring the inherent collinearity between covariates and the spatial effect would lead to causal inferences. Second, real count data usually reveal over or under-dispersion where the classical Poisson model is not appropriate to use. We propose a flexible Bayesian hierarchical modeling approach by joining non-confounding spatial methodology and a newly reconsidered dispersed count modeling from the renewal theory to control the issues. Specifically, we extend the methodology for analyzing spatial count data based on the gamma distribution assumption for waiting times. The model can be formulated as a latent Gaussian model, and consequently, we can carry out the fast computation using the integrated nested Laplace approximation method. We also examine different popular approaches for handling spatial confounding and compare their performances in the presence of dispersion. We use the proposed methodology to analyze a clinical dataset related to stomach cancer incidence in Slovenia and perform a simulation study to understand the proposed approachs merits better.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا