Do you want to publish a course? Click here

Path-integral based non-equilibrium quantum field theory of non-relativistic pairs inside an environment

277   0   0.0 ( 0 )
 Added by Tobias Binder
 Publication date 2021
  fields Physics
and research's language is English
 Authors Tobias Binder




Ask ChatGPT about the research

In this work, we derive differential equations from path-integral based non-equilibrium quantum field theory, that cover the dynamics and spectrum of non-relativistic two-body fields for any environment. For concreteness of the two-body fields, we choose the full potential non-relativistic Quantum Electrodynamics Lagrangian in this work. After closing the correlation function hierarchy of these equations and performing consistency checks with previous literature under certain limits, we demonstrate the range of physics applications. This includes Cosmology such as Dark Matter in the primordial plasma, Quarkonia inside a quark gluon plasma, and superconductivity and Ferromagnetism in Condensed or strongly Correlated Matter physics. Since we always had to take limits or approximations of our equations in order to recover those known cases, our equations could contain new phenomena. In particular it is based on Greens function that can deal with non-hermite potentials. We propose a scheme for other Lagrangian based theories or higher N-body states such as molecules to derive analog equations.



rate research

Read More

We investigate a class of exactly solvable quantum quench protocols with a finite quench rate in systems of one dimensional non-relativistic fermions in external harmonic oscillator or inverted harmonic oscillator potentials, with time dependent masses and frequencies. These hamiltonians arise, respectively, in harmonic traps, and the $c=1$ Matrix Model description of two dimensional string theory with time dependent string coupling. We show how the dynamics is determined by a single function of time which satisfies a generalized Ermakov-Pinney equation. The quench protocols we consider asymptote to constant masses and frequencies at early times, and cross or approach a gapless potential. In a right side up harmonic oscillator potential we determine the scaling behavior of the one point function and the entanglement entropy of a subregion by obtaining analytic approximations to the exact answers. The results are consistent with Kibble-Zurek scaling for slow quenches and with perturbation calculations for fast quenches. For cis-critical quench protocols the entanglement entropy oscillates at late times around its initial value. For end-critical protocols the entanglement entropy monotonically goes to zero inversely with time, reflecting the spread of fermions over the entire line. For the inverted harmonic oscillator potential, the dual collective field description is a scalar field in a time dependent metric and dilaton background.
Motivated by applications to the study of ultracold atomic gases near the unitarity limit, we investigate the structure of the operator product expansion (OPE) in non-relativistic conformal field theories (NRCFTs). The main tool used in our analysis is the representation theory of charged (i.e. non-zero particle number) operators in the NRCFT, in particular the mapping between operators and states in a non-relativistic radial quantization Hilbert space. Our results include: a determination of the OPE coefficients of descendant operators in terms of those of the underlying primary state, a demonstration of convergence of the (imaginary time) OPE in certain kinematic limits, and an estimate of the decay rate of the OPE tail inside matrix elements which, as in relativistic CFTs, depends exponentially on operator dimensions. To illustrate our results we consider several examples, including a strongly interacting field theory of bosons tuned to the unitarity limit, as well as a class of holographic models. Given the similarity with known statements about the OPE in SO(2,d) invariant field theories, our results suggest the existence of a bootstrap approach to constraining NRCFTs, with applications to bound state spectra and interactions. We briefly comment on a possible implementation of this non-relativistic conformal bootstrap program.
One of the manifestations of relativistic invariance in non-equilibrium quantum field theory is the horizon effect a.k.a. light-cone spreading of correlations: starting from an initially short-range correlated state, measurements of two observers at distant space-time points are expected to remain independent until their past light-cones overlap. Surprisingly, we find that in the presence of topological excitations correlations can develop outside of horizon and indeed even between infinitely distant points. We demonstrate this effect for a wide class of global quantum quenches to the sine-Gordon model. We point out that besides the maximum velocity bound implied by relativistic invariance, clustering of initial correlations is required to establish the horizon effect. We show that quenches in the sine-Gordon model have an interesting property: despite the fact that the initial states have exponentially decaying correlations and cluster in terms of the bosonic fields, they violate the clustering condition for the soliton fields, which is argued to be related to the non-trivial field topology. The nonlinear dynamics governed by the solitons makes the clustering violation manifest also in correlations of the local bosonic fields after the quench.
81 - Akash Jain 2020
We write down a Schwinger-Keldysh effective field theory for non-relativistic (Galilean) hydrodynamics. We use the null background construction to covariantly couple Galilean field theories to a set of background sources. In this language, Galilean hydrodynamics gets recast as relativistic hydrodynamics formulated on a one-dimension higher spacetime admitting a null Killing vector. This allows us to import the existing field-theoretic techniques for relativistic hydrodynamics into the Galilean setting, with minor modifications to include the additional background vector field. We use this formulation to work out an interacting field theory describing stochastic fluctuations of energy, momentum, and density modes around thermal equilibrium. We also present a translation of our results to the more conventional Newton-Cartan language and discuss how the same can be derived via a non-relativistic limit of the effective field theory for relativistic hydrodynamics.
We show that the matrix elements of integrable models computed by the Algebraic Bethe Ansatz can be put in direct correspondence with the Form Factors of integrable relativistic field theories. This happens when the S-matrix of a Bethe Ansatz model can be regarded as a suitable non-relativistic limit of the S-matrix of a field theory, and when there is a well-defined mapping between the Hilbert spaces and operators of the two theories. This correspondence provides an efficient method to compute matrix elements of Bethe Ansatz integrable models, overpassing the technical difficulties of their direct determination. We analyze this correspondence for the simplest example in which it occurs, i.e. the Quantum Non-Linear Schrodinger and the Sinh-Gordon models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا