No Arabic abstract
Using the Laplace derivative a Perron type integral, the Laplace integral, is defined. Moreover, it is shown that this integral includes Perron integral and to show that the inclusion is proper, an example of a function is constructed, which is Laplace integrable but not Perron integrable. Properties of integrals such as fundamental theorem of calculus, Hakes theorem, integration by parts, convergence theorems, mean value theorems, the integral remainder form of Taylors theorem with an estimation of the remainder, are established. It turns out that concerning the Alexiewiczs norm, the space of all Laplace integrable functions is incomplete and contains the set of all polynomials densely. Applications are shown to Poisson integral, a system of generalised ordinary differential equations and higher-order generalised ordinary differential equation.
We consider generalised Mehler semigroups and, assuming the existence of an associated invariant measure $sigma$, we prove functional integral inequalities with respect to $sigma$, such as logarithmic Sobolev and Poincar{e} type. Consequently, some integrability properties of exponential functions with respect to $sigma$ are deduced.
Volterra integral operators with non-sign-definite degenerate kernels $A(x,t)= sum_{k=0}^n A_k(x,t)$, $A_k(x,t)= a_k (x) t^k$, are studied acting from one weighted $L_2$ space on $(0,+infty)$ to another. Imposing an integral doubling condition on one of the weights, it is shown that the operator with the kernel $A(x,t)$ is bounded if and only $n+1$ operators with kernels $A_k(x,t)$ are all bounded. We apply this result to describe spaces of pointwise multipliers in weighted Sobolev spaces on $(0,+infty)$.
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first introduce the variable weak Hardy space on $mathbb R^n$, $W!H^{p(cdot)}(mathbb R^n)$, via the radial grand maximal function, and then establish its radial or non-tangential maximal function characterizations. Moreover, the authors also obtain various equivalent characterizations of $W!H^{p(cdot)}(mathbb R^n)$, respectively, by means of atoms, molecules, the Lusin area function, the Littlewood-Paley $g$-function or $g_{lambda}^ast$-function. As an application, the authors establish the boundedness of convolutional $delta$-type and non-convolutional $gamma$-order Calderon-Zygmund operators from $H^{p(cdot)}(mathbb R^n)$ to $W!H^{p(cdot)}(mathbb R^n)$ including the critical case $p_-={n}/{(n+delta)}$, where $p_-:=mathopmathrm{ess,inf}_{xin rn}p(x).$
We study the two-weighted estimate [ bigg|sum_{k=0}^na_k(x)int_0^xt^kf(t)dt|L_{q,v}(0,infty)bigg|leq c|f|L_{p,u}(0,infty)|,tag{$*$} ] where the functions $a_k(x)$ are not assumed to be positive. It is shown that for $1<pleq qleqinfty$, provided that the weight $u$ satisfies the certain conditions, the estimate $(*)$ holds if and only if the estimate [ sum_{k=0}^nbigg|a_k(x)int_0^xt^kf(t)dt|L_{q,v}(0,infty)bigg| leq c|f|L_{p,u}(0,infty)|.tag{$**$} ] is fulfilled. The necessary and sufficient conditions for $(**)$ to be valid are well-known. The obtained result can be applied to the estimates of differential operators with variable coefficients in some weighted Sobolev spaces.
The relationship between the operator norms of fractional integral operators acting on weighted Lebesgue spaces and the constant of the weights is investigated. Sharp boundsare obtained for both the fractional integral operators and the associated fractional maximal functions. As an application improved Sobolev inequalities are obtained. Some of the techniques used include a sharp off-diagonal version of the extrapolation theorem of Rubio de Francia and characterizations of two-weight norm inequalities.