Do you want to publish a course? Click here

New Massive JT Multi-Gravity and N-Replica of SYK Models

142   0   0.0 ( 0 )
 Added by Antonino Marciano
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a series of powerful correspondences among new multi-gravity extensions of the Jackiw-Teitelboim model, multi-SYK models and multi-Schwarzian quantum mechanics, in the $rm{(A)dS_{2}/CFT}$ arena. Deploying a $BF$-like formulation of the model, we discuss the counting of the degrees of freedom for some specific classes of multi-gravity potentials, and unveil connections among a variety of apparently different models. Quantization of multi-gravity models can be then achieved from both the Hartle-Hawking no-boundary proposal, the SYK partition function and the spin-foam approaches. We comment on the SYK quantization procedure, and deepen in the appendix the quantization scheme naturally achieved in the $BF$ framework. The new multi-gravity theory hence recovered presents intriguing applications for analogue gravitational models developed for condensed matter physics, including graphene, endowed with defects and high intensity magnetic fields.



rate research

Read More

103 - Clifford V. Johnson 2020
Some recently proposed definitions of Jackiw-Teitelboim gravity and supergravities in terms of combinations of minimal string models are explored, with a focus on physics beyond the perturbative expansion in spacetime topology. While this formally involves solving infinite order non-linear differential equations, it is shown that the physics can be extracted to arbitrarily high accuracy in a simple controlled truncation scheme, using a combination of analytical and numerical methods. The non-perturbative spectral densities are explicitly computed and exhibited. The full spectral form factors, involving crucial non-perturbative contributions from wormhole geometries, are also computed and displayed, showing the non-perturbative details of the characteristic `slope, `dip, `ramp and `plateau features. It is emphasized that results of this kind can most likely be readily extracted for other types of JT gravity using the same methods.
Aspects of the low energy physics of certain Jackiw-Teitelboim gravity and supergravity theories are explored, using their recently presented non-perturbative description in terms of minimal string models. This regime necessarily involves non-perturbative phenomena, and the inclusion of wormhole geometries connecting multiple copies of the nearly AdS$_2$ boundary in the computation of ensemble averages of key quantities. A new replica-scaling limit is considered, combining the replica method and double scaling with the low energy limit. Using it, the leading free energy, entropy, and specific heat are explored for various examples. Two models of particular note are the JT supergravity theory defined as a (1,2) Altland-Zirnbauer matrix ensemble by Stanford and Witten, and the Saad-Shenker-Stanford matrix model of ordinary JT gravity (non-perturbatively improved at low energy). The full models have a finite non-vanishing spectral density at zero energy. The replica-scaling construction suggests for them a low temperature entropy and specific heat that are linear in temperature.
145 - Shao-Kai Jian , Brian Swingle , 2020
The concepts of operator size and computational complexity play important roles in the study of quantum chaos and holographic duality because they help characterize the structure of time-evolving Heisenberg operators. It is particularly important to understand how these microscopically defined measures of complexity are related to notions of complexity defined in terms of a dual holographic geometry, such as complexity-volume (CV) duality. Here we study partially entangled thermal states in the Sachdev-Ye-Kitaev (SYK) model and their dual description in terms of operators inserted in the interior of a black hole in Jackiw-Teitelboim (JT) gravity. We compare a microscopic definition of complexity in the SYK model known as K-complexity to calculations using CV duality in JT gravity and find that both quantities show an exponential-to-linear growth behavior. We also calculate the growth of operator size under time evolution and find connections between size and complexity. While the notion of operator size saturates at the scrambling time, our study suggests that complexity, which is well defined in both quantum systems and gravity theories, can serve as a useful measure of operator evolution at both early and late times.
It is proposed that a family of Jackiw-Teitelboim supergravites, recently discussed in connection with matrix models by Stanford and Witten, can be given a complete definition, to all orders in the topological expansion and beyond, in terms of a specific combination of minimal string theories. This construction defines non-perturbative physics for the supergravity that is well-defined and stable. The minimal models come from double-scaled complex matrix models and correspond to the cases $(2Gamma{+}1,2)$ in the Altland-Zirnbauer $(boldsymbol{alpha},boldsymbol{beta})$ classification of random matrix ensembles, where $Gamma$ is a parameter. A central role is played by a non-linear `string equation that naturally incorporates $Gamma$, usually taken to be an integer, counting e.g., D-branes in the minimal models. Here, half-integer $Gamma$ also has an interpretation. In fact, $Gamma{=}{pm}frac12$ yields the cases $(0,2)$ and $(2,2)$ that were shown by Stanford and Witten to have very special properties. These features are manifest in this definition because the relevant solutions of the string equation have special properties for $Gamma{=}{pm}frac12$. Additional special features for other half-integer $Gamma$ suggest new surprises in the supergravity models.
277 - Erwan Allys 2016
We investigate a new class of scalar multi-galileon models, which is not included in the commonly admitted general formulation of generalized multi-galileons. The Lagrangians of this class of models, some of them having already been introduced in previous works, are specific to multi-galileon theories, and vanish in the single galileon case. We examine them in details, discussing in particular some hidden symmetry properties which can be made explicit by adding total derivatives to these Lagrangians. These properties allow us to describe the possible dynamics for these new Lagrangians in the case of multi-galileons in the fundamental representation of a SO(N) and SU(N) global symmetry group, as well as in the adjoint representation of a SU(N) global symmetry group. We perform in parallel an exhaustive examination of some of these models, finding a complete agreement with the dynamics obtained using the symmetry properties. Finally, we conclude by discussing what could be the most general multi-galileon theory, as well as the link between scalar and vector multi-galileon models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا