No Arabic abstract
Some recently proposed definitions of Jackiw-Teitelboim gravity and supergravities in terms of combinations of minimal string models are explored, with a focus on physics beyond the perturbative expansion in spacetime topology. While this formally involves solving infinite order non-linear differential equations, it is shown that the physics can be extracted to arbitrarily high accuracy in a simple controlled truncation scheme, using a combination of analytical and numerical methods. The non-perturbative spectral densities are explicitly computed and exhibited. The full spectral form factors, involving crucial non-perturbative contributions from wormhole geometries, are also computed and displayed, showing the non-perturbative details of the characteristic `slope, `dip, `ramp and `plateau features. It is emphasized that results of this kind can most likely be readily extracted for other types of JT gravity using the same methods.
Aspects of the low energy physics of certain Jackiw-Teitelboim gravity and supergravity theories are explored, using their recently presented non-perturbative description in terms of minimal string models. This regime necessarily involves non-perturbative phenomena, and the inclusion of wormhole geometries connecting multiple copies of the nearly AdS$_2$ boundary in the computation of ensemble averages of key quantities. A new replica-scaling limit is considered, combining the replica method and double scaling with the low energy limit. Using it, the leading free energy, entropy, and specific heat are explored for various examples. Two models of particular note are the JT supergravity theory defined as a (1,2) Altland-Zirnbauer matrix ensemble by Stanford and Witten, and the Saad-Shenker-Stanford matrix model of ordinary JT gravity (non-perturbatively improved at low energy). The full models have a finite non-vanishing spectral density at zero energy. The replica-scaling construction suggests for them a low temperature entropy and specific heat that are linear in temperature.
Recently, Saad, Shenker and Stanford showed how to define the genus expansion of Jackiw-Teitelboim quantum gravity in terms of a double-scaled Hermitian matrix model. However, the models non-perturbative sector has fatal instabilities at low energy that they cured by procedures that render the physics non-unique. This might not be a desirable property for a system that is supposed to capture key features of quantum black holes. Presented here is a model with identical perturbative physics at high energy that instead has a stable and unambiguous non-perturbative completion of the physics at low energy. An explicit examination of the full spectral density function shows how this is achieved. The new model, which is based on complex matrix models, also allows for the straightforward inclusion of spacetime features analogous to Ramond-Ramond fluxes. Intriguingly, there is a deformation parameter that connects this non-perturbative formulation of JT gravity to one which, at low energy, has features of a super JT gravity.
Recent work has shown that certain deformations of the scalar potential in Jackiw-Teitelboim gravity can be written as double-scaled matrix models. However, some of the deformations exhibit an apparent breakdown of unitarity in the form of a negative spectral density at disc order. We show here that the source of the problem is the presence of a multi-valued solution of the leading order matrix model string equation. While for a class of deformations we fix the problem by identifying a first order phase transition, for others we show that the theory is both perturbatively and non-perturbatively inconsistent. Aspects of the phase structure of the deformations are mapped out, using methods known to supply a non-perturbative definition of undeformed JT gravity. Some features are in qualitative agreement with a semi-classical analysis of the phase structure of two-dimensional black holes in these deformed theories.
We study the perturbative series associated to bi-local correlators in Jackiw-Teitelboim (JT) gravity, for positive weight $lambda$ of the matter CFT operators. Starting from the known exact expression, derived by CFT and gauge theoretical methods, we reproduce the Schwarzian semiclassical expansion beyond leading order. The computation is done for arbitrary temperature and finite boundary distances, in the case of disk and trumpet topologies. A formula presenting the perturbative result (for $lambda in mathbb{N}/2$) at any given order in terms of generalized Apostol-Bernoulli polynomials is also obtained. The limit of zero temperature is then considered, obtaining a compact expression that allows to discuss the asymptotic behaviour of the perturbative series. Finally we highlight the possibility to express the exact result as particular combinations of Mordell integrals.
It is proposed that a family of Jackiw-Teitelboim supergravites, recently discussed in connection with matrix models by Stanford and Witten, can be given a complete definition, to all orders in the topological expansion and beyond, in terms of a specific combination of minimal string theories. This construction defines non-perturbative physics for the supergravity that is well-defined and stable. The minimal models come from double-scaled complex matrix models and correspond to the cases $(2Gamma{+}1,2)$ in the Altland-Zirnbauer $(boldsymbol{alpha},boldsymbol{beta})$ classification of random matrix ensembles, where $Gamma$ is a parameter. A central role is played by a non-linear `string equation that naturally incorporates $Gamma$, usually taken to be an integer, counting e.g., D-branes in the minimal models. Here, half-integer $Gamma$ also has an interpretation. In fact, $Gamma{=}{pm}frac12$ yields the cases $(0,2)$ and $(2,2)$ that were shown by Stanford and Witten to have very special properties. These features are manifest in this definition because the relevant solutions of the string equation have special properties for $Gamma{=}{pm}frac12$. Additional special features for other half-integer $Gamma$ suggest new surprises in the supergravity models.