Do you want to publish a course? Click here

FedCCEA : A Practical Approach of Client Contribution Evaluation for Federated Learning

101   0   0.0 ( 0 )
 Added by Sung Kuk Shyn
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Client contribution evaluation, also known as data valuation, is a crucial approach in federated learning(FL) for client selection and incentive allocation. However, due to restrictions of accessibility of raw data, only limited information such as local weights and local data size of each client is open for quantifying the client contribution. Using data size from available information, we introduce an empirical evaluation method called Federated Client Contribution Evaluation through Accuracy Approximation(FedCCEA). This method builds the Accuracy Approximation Model(AAM), which estimates a simulated test accuracy using inputs of sampled data size and extracts the clients data quality and data size to measure client contribution. FedCCEA strengthens some advantages: (1) enablement of data size selection to the clients, (2) feasible evaluation time regardless of the number of clients, and (3) precise estimation in non-IID settings. We demonstrate the superiority of FedCCEA compared to previous methods through several experiments: client contribution distribution, client removal, and robustness test to partial participation.



rate research

Read More

In federated learning (FL), fair and accurate measurement of the contribution of each federated participant is of great significance. The level of contribution not only provides a rational metric for distributing financial benefits among federated participants, but also helps to discover malicious participants that try to poison the FL framework. Previous methods for contribution measurement were based on enumeration over possible combination of federated participants. Their computation costs increase drastically with the number of participants or feature dimensions, making them inapplicable in practical situations. In this paper an efficient method is proposed to evaluate the contributions of federated participants. This paper focuses on the horizontal FL framework, where client servers calculate parameter gradients over their local data, and upload the gradients to the central server. Before aggregating the client gradients, the central server train a data value estimator of the gradients using reinforcement learning techniques. As shown by experimental results, the proposed method consistently outperforms the conventional leave-one-out method in terms of valuation authenticity as well as time complexity.
117 - Li Li , Huazhu Fu , Bo Han 2021
Federated learning (FL) collaboratively aggregates a shared global model depending on multiple local clients, while keeping the training data decentralized in order to preserve data privacy. However, standard FL methods ignore the noisy client issue, which may harm the overall performance of the aggregated model. In this paper, we first analyze the noisy client statement, and then model noisy clients with different noise distributions (e.g., Bernoulli and truncated Gaussian distributions). To learn with noisy clients, we propose a simple yet effective FL framework, named Federated Noisy Client Learning (Fed-NCL), which is a plug-and-play algorithm and contains two main components: a data quality measurement (DQM) to dynamically quantify the data quality of each participating client, and a noise robust aggregation (NRA) to adaptively aggregate the local models of each client by jointly considering the amount of local training data and the data quality of each client. Our Fed-NCL can be easily applied in any standard FL workflow to handle the noisy client issue. Experimental results on various datasets demonstrate that our algorithm boosts the performances of different state-of-the-art systems with noisy clients.
As artificial intelligence (AI)-empowered applications become widespread, there is growing awareness and concern for user privacy and data confidentiality. This has contributed to the popularity of federated learning (FL). FL applications often face data distribution and device capability heterogeneity across data owners. This has stimulated the rapid development of Personalized FL (PFL). In this paper, we complement existing surveys, which largely focus on the methods and applications of FL, with a review of recent advances in PFL. We discuss hurdles to PFL under the current FL settings, and present a unique taxonomy dividing PFL techniques into data-based and model-based approaches. We highlight their key ideas, and envision promising future trajectories of research towards new PFL architectural design, realistic PFL benchmarking, and trustworthy PFL approaches.
91 - Sone Kyaw Pye , Han Yu 2021
Federated learning (FL) is a distributed machine learning approach involving multiple clients collaboratively training a shared model. Such a system has the advantage of more training data from multiple clients, but data can be non-identically and independently distributed (non-i.i.d.). Privacy and integrity preserving features such as differential privacy (DP) and robust aggregation (RA) are commonly used in FL. In this work, we show that on common deep learning tasks, the performance of FL models differs amongst clients and situations, and FL models can sometimes perform worse than local models due to non-i.i.d. data. Secondly, we show that incorporating DP and RA degrades performance further. Then, we conduct an ablation study on the performance impact of different combinations of common personalization approaches for FL, such as finetuning, mixture-of-experts ensemble, multi-task learning, and knowledge distillation. It is observed that certain combinations of personalization approaches are more impactful in certain scenarios while others always improve performance, and combination approaches are better than individual ones. Most clients obtained better performance with combined personalized FL and recover from performance degradation caused by non-i.i.d. data, DP, and RA.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا