Do you want to publish a course? Click here

Towards Personalized Federated Learning

79   0   0.0 ( 0 )
 Added by Alysa Ziying Tan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

As artificial intelligence (AI)-empowered applications become widespread, there is growing awareness and concern for user privacy and data confidentiality. This has contributed to the popularity of federated learning (FL). FL applications often face data distribution and device capability heterogeneity across data owners. This has stimulated the rapid development of Personalized FL (PFL). In this paper, we complement existing surveys, which largely focus on the methods and applications of FL, with a review of recent advances in PFL. We discuss hurdles to PFL under the current FL settings, and present a unique taxonomy dividing PFL techniques into data-based and model-based approaches. We highlight their key ideas, and envision promising future trajectories of research towards new PFL architectural design, realistic PFL benchmarking, and trustworthy PFL approaches.



rate research

Read More

As data is generated and stored almost everywhere, learning a model from a data-decentralized setting is a task of interest for many AI-driven service providers. Although federated learning is settled down as the main solution in such situations, there still exists room for improvement in terms of personalization. Training federated learning systems usually focuses on optimizing a global model that is identically deployed to all client devices. However, a single global model is not sufficient for each client to be personalized on their performance as local data assumes to be not identically distributed across clients. We propose a method to address this situation through the lens of ensemble learning based on the construction of a low-loss subspace continuum that generates a high-accuracy ensemble of two endpoints (i.e. global model and local model). We demonstrate that our method achieves consistent gains both in personalized and unseen client evaluation settings through extensive experiments on several standard benchmark datasets.
Federated learning is promising for its ability to collaboratively train models with multiple clients without accessing their data, but vulnerable when clients data distributions diverge from each other. This divergence further leads to a dilemma: Should we prioritize the learned models generic performance (for future use at the server) or its personalized performance (for each client)? These two, seemingly competing goals have divided the community to focus on one or the other, yet in this paper we show that it is possible to approach both at the same time. Concretely, we propose a novel federated learning framework that explicitly decouples a models dual duties with two prediction tasks. On the one hand, we introduce a family of losses that are robust to non-identical class distributions, enabling clients to train a generic predictor with a consistent objective across them. On the other hand, we formulate the personalized predictor as a lightweight adaptive module that is learned to minimize each clients empirical risk on top of the generic predictor. With this two-loss, two-predictor framework which we name Federated Robust Decoupling Fed-RoD, the learned model can simultaneously achieve state-of-the-art generic and personalized performance, essentially bridging the two tasks.
243 - Qiong Wu , Xu Chen , Zhi Zhou 2020
In-home health monitoring has attracted great attention for the ageing population worldwide. With the abundant user health data accessed by Internet of Things (IoT) devices and recent development in machine learning, smart healthcare has seen many successful stories. However, existing approaches for in-home health monitoring do not pay sufficient attention to user data privacy and thus are far from being ready for large-scale practical deployment. In this paper, we propose FedHome, a novel cloud-edge based federated learning framework for in-home health monitoring, which learns a shared global model in the cloud from multiple homes at the network edges and achieves data privacy protection by keeping user data locally. To cope with the imbalanced and non-IID distribution inherent in users monitoring data, we design a generative convolutional autoencoder (GCAE), which aims to achieve accurate and personalized health monitoring by refining the model with a generated class-balanced dataset from users personal data. Besides, GCAE is lightweight to transfer between the cloud and edges, which is useful to reduce the communication cost of federated learning in FedHome. Extensive experiments based on realistic human activity recognition data traces corroborate that FedHome significantly outperforms existing widely-adopted methods.
Federated Learning (FL) allows edge devices to collaboratively learn a shared prediction model while keeping their training data on the device, thereby decoupling the ability to do machine learning from the need to store data in the cloud. Despite the algorithmic advancements in FL, the support for on-device training of FL algorithms on edge devices remains poor. In this paper, we present an exploration of on-device FL on various smartphones and embedded devices using the Flower framework. We also evaluate the system costs of on-device FL and discuss how this quantification could be used to design more efficient FL algorithms.
129 - Ji Wang , Bokai Cao , Philip S. Yu 2018
Recent years have witnessed an explosive growth of mobile devices. Mobile devices are permeating every aspect of our daily lives. With the increasing usage of mobile devices and intelligent applications, there is a soaring demand for mobile applications with machine learning services. Inspired by the tremendous success achieved by deep learning in many machine learning tasks, it becomes a natural trend to push deep learning towards mobile applications. However, there exist many challenges to realize deep learning in mobile applications, including the contradiction between the miniature nature of mobile devices and the resource requirement of deep neural networks, the privacy and security concerns about individuals data, and so on. To resolve these challenges, during the past few years, great leaps have been made in this area. In this paper, we provide an overview of the current challenges and representative achievements about pushing deep learning on mobile devices from three aspects: training with mobile data, efficient inference on mobile devices, and applications of mobile deep learning. The former two aspects cover the primary tasks of deep learning. Then, we go through our two recent applications that apply the data collected by mobile devices to inferring mood disturbance and user identification. Finally, we conclude this paper with the discussion of the future of this area.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا