No Arabic abstract
Optimal Transport (OT) theory has seen an increasing amount of attention from the computer science community due to its potency and relevance in modeling and machine learning. It introduces means that serve as powerful ways to compare probability distributions with each other, as well as producing optimal mappings to minimize cost functions. In this survey, we present a brief introduction and history, a survey of previous work and propose directions of future study. We will begin by looking at the history of optimal transport and introducing the founders of this field. We then give a brief glance into the algorithms related to OT. Then, we will follow up with a mathematical formulation and the prerequisites to understand OT. These include Kantorovich duality, entropic regularization, KL Divergence, and Wassertein barycenters. Since OT is a computationally expensive problem, we then introduce the entropy-regularized version of computing optimal mappings, which allowed OT problems to become applicable in a wide range of machine learning problems. In fact, the methods generated from OT theory are competitive with the current state-of-the-art methods. We follow this up by breaking down research papers that focus on image processing, graph learning, neural architecture search, document representation, and domain adaptation. We close the paper with a small section on future research. Of the recommendations presented, three main problems are fundamental to allow OT to become widely applicable but rely strongly on its mathematical formulation and thus are hardest to answer. Since OT is a novel method, there is plenty of space for new research, and with more and more competitive methods (either on an accuracy level or computational speed level) being created, the future of applied optimal transport is bright as it has become pervasive in machine learning.
Exponential tilting is a technique commonly used in fields such as statistics, probability, information theory, and optimization to create parametric distribution shifts. Despite its prevalence in related fields, tilting has not seen widespread use in machine learning. In this work, we aim to bridge this gap by exploring the use of tilting in risk minimization. We study a simple extension to ERM -- tilted empirical risk minimization (TERM) -- which uses exponential tilting to flexibly tune the impact of individual losses. The resulting framework has several useful properties: We show that TERM can increase or decrease the influence of outliers, respectively, to enable fairness or robustness; has variance-reduction properties that can benefit generalization; and can be viewed as a smooth approximation to a superquantile method. Our work makes rigorous connections between TERM and related objectives, such as Value-at-Risk, Conditional Value-at-Risk, and distributionally robust optimization (DRO). We develop batch and stochastic first-order optimization methods for solving TERM, provide convergence guarantees for the solvers, and show that the framework can be efficiently solved relative to common alternatives. Finally, we demonstrate that TERM can be used for a multitude of applications in machine learning, such as enforcing fairness between subgroups, mitigating the effect of outliers, and handling class imbalance. Despite the straightforward modification TERM makes to traditional ERM objectives, we find that the framework can consistently outperform ERM and deliver competitive performance with state-of-the-art, problem-specific approaches.
Optimal transport maps define a one-to-one correspondence between probability distributions, and as such have grown popular for machine learning applications. However, these maps are generally defined on empirical observations and cannot be generalized to new samples while preserving asymptotic properties. We extend a novel method to learn a consistent estimator of a continuous optimal transport map from two empirical distributions. The consequences of this work are two-fold: first, it enables to extend the transport plan to new observations without computing again the discrete optimal transport map; second, it provides statistical guarantees to machine learning applications of optimal transport. We illustrate the strength of this approach by deriving a consistent framework for transport-based counterfactual explanations in fairness.
Membership inference attack aims to identify whether a data sample was used to train a machine learning model or not. It can raise severe privacy risks as the membership can reveal an individuals sensitive information. For example, identifying an individuals participation in a hospitals health analytics training set reveals that this individual was once a patient in that hospital. Membership inference attacks have been shown to be effective on various machine learning models, such as classification models, generative models, and sequence-to-sequence models. Meanwhile, many methods are proposed to defend such a privacy attack. Although membership inference attack is an emerging and rapidly growing research area, there is no comprehensive survey on this topic yet. In this paper, we bridge this important gap in membership inference attack literature. We present the first comprehensive survey of membership inference attacks. We summarize and categorize existing membership inference attacks and defenses and explicitly present how to implement attacks in various settings. Besides, we discuss why membership inference attacks work and summarize the benchmark datasets to facilitate comparison and ensure fairness of future work. Finally, we propose several possible directions for future research and possible applications relying on reviewed works.
Inverse optimal transport (OT) refers to the problem of learning the cost function for OT from observed transport plan or its samples. In this paper, we derive an unconstrained convex optimization formulation of the inverse OT problem, which can be further augmented by any customizable regularization. We provide a comprehensive characterization of the properties of inverse OT, including uniqueness of solutions. We also develop two numerical algorithms, one is a fast matrix scaling method based on the Sinkhorn-Knopp algorithm for discrete OT, and the other one is a learning based algorithm that parameterizes the cost function as a deep neural network for continuous OT. The novel framework proposed in the work avoids repeatedly solving a forward OT in each iteration which has been a thorny computational bottleneck for the bi-level optimization in existing inverse OT approaches. Numerical results demonstrate promising efficiency and accuracy advantages of the proposed algorithms over existing state-of-the-art methods.
Our experience of the world is multimodal - we see objects, hear sounds, feel texture, smell odors, and taste flavors. Modality refers to the way in which something happens or is experienced and a research problem is characterized as multimodal when it includes multiple such modalities. In order for Artificial Intelligence to make progress in understanding the world around us, it needs to be able to interpret such multimodal signals together. Multimodal machine learning aims to build models that can process and relate information from multiple modalities. It is a vibrant multi-disciplinary field of increasing importance and with extraordinary potential. Instead of focusing on specific multimodal applications, this paper surveys the recent advances in multimodal machine learning itself and presents them in a common taxonomy. We go beyond the typical early and late fusion categorization and identify broader challenges that are faced by multimodal machine learning, namely: representation, translation, alignment, fusion, and co-learning. This new taxonomy will enable researchers to better understand the state of the field and identify directions for future research.