No Arabic abstract
Relational fact extraction aims to extract semantic triplets from unstructured text. In this work, we show that all of the relational fact extraction models can be organized according to a graph-oriented analytical perspective. An efficient model, aDjacency lIst oRiented rElational faCT (DIRECT), is proposed based on this analytical framework. To alleviate challenges of error propagation and sub-task loss equilibrium, DIRECT employs a novel adaptive multi-task learning strategy with dynamic sub-task loss balancing. Extensive experiments are conducted on two benchmark datasets, and results prove that the proposed model outperforms a series of state-of-the-art (SoTA) models for relational triplet extraction.
Even for domain experts, it is a non-trivial task to verify a scientific claim by providing supporting or refuting evidence rationales. The situation worsens as misinformation is proliferated on social media or news websites, manually or programmatically, at every moment. As a result, an automatic fact-verification tool becomes crucial for combating the spread of misinformation. In this work, we propose a novel, paragraph-level, multi-task learning model for the SciFact task by directly computing a sequence of contextualized sentence embeddings from a BERT model and jointly training the model on rationale selection and stance prediction.
We propose NeuralWOZ, a novel dialogue collection framework that uses model-based dialogue simulation. NeuralWOZ has two pipelined models, Collector and Labeler. Collector generates dialogues from (1) users goal instructions, which are the user context and task constraints in natural language, and (2) systems API call results, which is a list of possible query responses for user requests from the given knowledge base. Labeler annotates the generated dialogue by formulating the annotation as a multiple-choice problem, in which the candidate labels are extracted from goal instructions and API call results. We demonstrate the effectiveness of the proposed method in the zero-shot domain transfer learning for dialogue state tracking. In the evaluation, the synthetic dialogue corpus generated from NeuralWOZ achieves a new state-of-the-art with improvements of 4.4% point joint goal accuracy on average across domains, and improvements of 5.7% point of zero-shot coverage against the MultiWOZ 2.1 dataset.
This paper describes our submission for the End-to-end Multi-domain Task Completion Dialog shared task at the 9th Dialog System Technology Challenge (DSTC-9). Participants in the shared task build an end-to-end task completion dialog system which is evaluated by human evaluation and a user simulator based automatic evaluation. Different from traditional pipelined approaches where modules are optimized individually and suffer from cascading failure, we propose an end-to-end dialog system that 1) uses Generative Pretraining 2 (GPT-2) as the backbone to jointly solve Natural Language Understanding, Dialog State Tracking, and Natural Language Generation tasks, 2) adopts Domain and Task Adaptive Pretraining to tailor GPT-2 to the dialog domain before finetuning, 3) utilizes heuristic pre/post-processing rules that greatly simplify the prediction tasks and improve generalizability, and 4) equips a fault tolerance module to correct errors and inappropriate responses. Our proposed method significantly outperforms baselines and ties for first place in the official evaluation. We make our source code publicly available.
Question answering (QA) using textual sources for purposes such as reading comprehension (RC) has attracted much attention. This study focuses on the task of explainable multi-hop QA, which requires the system to return the answer with evidence sentences by reasoning and gathering disjoint pieces of the reference texts. It proposes the Query Focused Extractor (QFE) model for evidence extraction and uses multi-task learning with the QA model. QFE is inspired by extractive summarization models; compared with the existing method, which extracts each evidence sentence independently, it sequentially extracts evidence sentences by using an RNN with an attention mechanism on the question sentence. It enables QFE to consider the dependency among the evidence sentences and cover important information in the question sentence. Experimental results show that QFE with a simple RC baseline model achieves a state-of-the-art evidence extraction score on HotpotQA. Although designed for RC, it also achieves a state-of-the-art evidence extraction score on FEVER, which is a recognizing textual entailment task on a large textual database.
Distant supervision (DS) aims to generate large-scale heuristic labeling corpus, which is widely used for neural relation extraction currently. However, it heavily suffers from noisy labeling and long-tail distributions problem. Many advanced approaches usually separately address two problems, which ignore their mutual interactions. In this paper, we propose a novel framework named RH-Net, which utilizes Reinforcement learning and Hierarchical relational searching module to improve relation extraction. We leverage reinforcement learning to instruct the model to select high-quality instances. We then propose the hierarchical relational searching module to share the semantics from correlative instances between data-rich and data-poor classes. During the iterative process, the two modules keep interacting to alleviate the noisy and long-tail problem simultaneously. Extensive experiments on widely used NYT data set clearly show that our method significant improvements over state-of-the-art baselines.