No Arabic abstract
Even for domain experts, it is a non-trivial task to verify a scientific claim by providing supporting or refuting evidence rationales. The situation worsens as misinformation is proliferated on social media or news websites, manually or programmatically, at every moment. As a result, an automatic fact-verification tool becomes crucial for combating the spread of misinformation. In this work, we propose a novel, paragraph-level, multi-task learning model for the SciFact task by directly computing a sequence of contextualized sentence embeddings from a BERT model and jointly training the model on rationale selection and stance prediction.
Understanding tables is an important and relevant task that involves understanding table structure as well as being able to compare and contrast information within cells. In this paper, we address this challenge by presenting a new dataset and tasks that addresses this goal in a shared task in SemEval 2020 Task 9: Fact Verification and Evidence Finding for Tabular Data in Scientific Documents (SEM-TAB-FACTS). Our dataset contains 981 manually-generated tables and an auto-generated dataset of 1980 tables providing over 180K statement and over 16M evidence annotations. SEM-TAB-FACTS featured two sub-tasks. In sub-task A, the goal was to determine if a statement is supported, refuted or unknown in relation to a table. In sub-task B, the focus was on identifying the specific cells of a table that provide evidence for the statement. 69 teams signed up to participate in the task with 19 successful submissions to subtask A and 12 successful submissions to subtask B. We present our results and main findings from the competition.
Relational fact extraction aims to extract semantic triplets from unstructured text. In this work, we show that all of the relational fact extraction models can be organized according to a graph-oriented analytical perspective. An efficient model, aDjacency lIst oRiented rElational faCT (DIRECT), is proposed based on this analytical framework. To alleviate challenges of error propagation and sub-task loss equilibrium, DIRECT employs a novel adaptive multi-task learning strategy with dynamic sub-task loss balancing. Extensive experiments are conducted on two benchmark datasets, and results prove that the proposed model outperforms a series of state-of-the-art (SoTA) models for relational triplet extraction.
Tables provide valuable knowledge that can be used to verify textual statements. While a number of works have considered table-based fact verification, direct alignments of tabular data with tokens in textual statements are rarely available. Moreover, training a generalized fact verification model requires abundant labeled training data. In this paper, we propose a novel system to address these problems. Inspired by counterfactual causality, our system identifies token-level salience in the statement with probing-based salience estimation. Salience estimation allows enhanced learning of fact verification from two perspectives. From one perspective, our system conducts masked salient token prediction to enhance the model for alignment and reasoning between the table and the statement. From the other perspective, our system applies salience-aware data augmentation to generate a more diverse set of training instances by replacing non-salient terms. Experimental results on TabFact show the effective improvement by the proposed salience-aware learning techniques, leading to the new SOTA performance on the benchmark. Our code is publicly available at https://github.com/luka-group/Salience-aware-Learning .
The problem of verifying whether a textual hypothesis holds based on the given evidence, also known as fact verification, plays an important role in the study of natural language understanding and semantic representation. However, existing studies are mainly restricted to dealing with unstructured evidence (e.g., natural language sentences and documents, news, etc), while verification under structured evidence, such as tables, graphs, and databases, remains under-explored. This paper specifically aims to study the fact verification given semi-structured data as evidence. To this end, we construct a large-scale dataset called TabFact with 16k Wikipedia tables as the evidence for 118k human-annotated natural language statements, which are labeled as either ENTAILED or REFUTED. TabFact is challenging since it involves both soft linguistic reasoning and hard symbolic reasoning. To address these reasoning challenges, we design two different models: Table-BERT and Latent Program Algorithm (LPA). Table-BERT leverages the state-of-the-art pre-trained language model to encode the linearized tables and statements into continuous vectors for verification. LPA parses statements into programs and executes them against the tables to obtain the returned binary value for verification. Both methods achieve similar accuracy but still lag far behind human performance. We also perform a comprehensive analysis to demonstrate great future opportunities. The data and code of the dataset are provided in url{https://github.com/wenhuchen/Table-Fact-Checking}.
In this paper we propose a multi-task sequence prediction system, based on recurrent neural networks and used to annotate on multiple levels an Arabizi Tunisian corpus. The annotation performed are text classification, tokenization, PoS tagging and encoding of Tunisian Arabizi into CODA* Arabic orthography. The system is learned to predict all the annotation levels in cascade, starting from Arabizi input. We evaluate the system on the TIGER German corpus, suitably converting data to have a multi-task problem, in order to show the effectiveness of our neural architecture. We show also how we used the system in order to annotate a Tunisian Arabizi corpus, which has been afterwards manually corrected and used to further evaluate sequence models on Tunisian data. Our system is developed for the Fairseq framework, which allows for a fast and easy use for any other sequence prediction problem.