Do you want to publish a course? Click here

A room temperature polar ferromagnetic metal

258   0   0.0 ( 0 )
 Added by Hongrui Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The advent of long-range magnetic order in non-centrosymmetric compounds has stimulated interest in the possibility of exotic spin transport phenomena and topologically protected spin textures for applications in next-generation spintronics. This work reports a novel wurtzite-structure polar magnetic metal, identified as AA-stacked (Fe0.5Co0.5)5-xGeTe2, which exhibits a Neel-type skyrmion lattice as well as a Rashba-Edelstein effect at room temperature. Atomic resolution imaging of the structure reveals a structural transition as a function of Co-substitution, leading to the polar phase at 50% Co. This discovery reveals an unprecedented layered polar magnetic system for investigating intriguing spin topologies and ushers in a promising new framework for spintronics.



rate research

Read More

Polar metals, commonly defined by the coexistence of polar crystal structure and metallicity, are thought to be scarce because the long-range electrostatic fields favoring the polar structure are expected to be fully screened by the conduction electrons of a metal. Moreover, reducing from three to two dimensions, it remains an open question whether a polar metal can exist. Here we report on the realization of a room temperature two-dimensional polar metal of the B-site type in tri-color (tri-layer) superlattices BaTiO$_3$/SrTiO$_3$/LaTiO$_3$. A combination of atomic resolution scanning transmission electron microscopy with electron energy loss spectroscopy, optical second harmonic generation, electrical transport, and first-principles calculations have revealed the microscopic mechanisms of periodic electric polarization, charge distribution, and orbital symmetry. Our results provide a route to creating all-oxide artificial non-centrosymmetric quasi-two-dimensional metals with exotic quantum states including coexisting ferroelectric, ferromagnetic, and superconducting phases.
97 - Mao Ye , Songbai Hu , Shanming Ke 2019
Materials with reduced dimensions have been shown to host a wide variety of exotic properties and novel quantum states that often defy textbook wisdom1-5. Ferroelectric polarization and metallicity are well-known examples of mutually exclusive properties that cannot coexist in bulk solids because the net electric field in a metal can be fully screened by free electrons6. An atomically thin metallic layer capped by insulating layers has shown decent conductivity at room temperature7. Moreover, a penetrating polarization field can be employed to induce an ion displacement and create an intrinsic polarization in the metallic layer. Here we demonstrate that a ferroelectric metal can be artificially synthesized through imposing a strong polarization field in the form of ferroelectric/unit-cell-thin metal superlattices. In this way the symmetry of an atomically thin conductive layer can be broken and manipulated by a neighboring polar field, thereby forming a two-dimensional (2D) ferroelectric metal. The fabricated of (SrRuO3)1/(BaTiO3)10 superlattices exhibit ferroelectric polarization in an atomically thin layer with metallic conductivity at room temperature. A multipronged investigation combining structural analyses, electrical measurements, and first-principles electronic structure calculations unravels the coexistence of 2D electrical conductivity in the SrRuO3 monolayer accompanied by the electric polarization. Such 2D ferroelectric metal paves a novel way to engineer a quantum multi-state with unusual coexisting properties, such as ferroelectrics, ferromagnetics and metals, manipulated by external fields8,9.
We report an above-room-temperature ferromagnetic state realized in a proximitized Dirac semimetal, which is fabricated by growing typical Dirac semimetal Cd$_3$As$_2$ films on a ferromagnetic garnet with strong perpendicular magnetization. Observed anomalous Hall conductivity with substantially large Hall angles is found to be almost proportional to magnetization and opposite in sign to it. Theoretical calculations based on first-principles electronic structure also demonstrate that the Fermi-level dependent anomalous Hall conductivity reflects the Berry curvature originating in the split Weyl nodes. The present Dirac-semimetal/ferromagnetic-insulator heterostructure will provide a novel platform for exploring Weyl-node transport phenomena and spintronic functions lately proposed for topological semimetals.
Single-electron transistors would represent an approach for less power consuming microelectronic devices if room-temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages: By employing the scalable Langmuir-Blodgett method we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90 %, reliable and sinusoidal Coulomb oscillations and room-temperature operation. Furthermore, this concept allows for versatile tuning of the device properties like Coulomb-energy gap, threshold voltage, as well as period, position and strength of the oscillations.
Insulating uniaxial room-temperature ferromagnets are a prerequisite for commonplace spin wave-based devices, the obstacle in contemporary ferromagnets being the coupling of ferromagnetism with large conductivity. We show that the uniaxial $A^{1+2x}$Ti$^{4+}$$_{1-x}$O$_3$ (ATO), $A=$Ni$^{2+}$,Co$^{2+}$ and $0.6<x leq 1$, thin films are electrically insulating ferromagnets already at room-temperature. The octahedra network of the ATO and ilmenite structures are similar yet different octahedra-filling proved to be a route to switch from the antiferromagnetic to ferromagnetic regime. Octahedra can continuously be filled up to $x=1$, or vacated $(-0.24<x<0)$ in the ATO structure. TiO-layers, which separate the ferromagnetic (Ni,Co)O-layers and intermediate the antiferromagnetic coupling between the ferromagnetic layers in the NiTiO$_3$ and CoTiO$_3$ ilmenites, can continuously be replaced by (Ni,Co)O-layers to convert the ATO-films to ferromagnetic insulator with abundant direct cation interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا