No Arabic abstract
Conditional image synthesis aims to create an image according to some multi-modal guidance in the forms of textual descriptions, reference images, and image blocks to preserve, as well as their combinations. In this paper, instead of investigating these control signals separately, we propose a new two-stage architecture, UFC-BERT, to unify any number of multi-modal controls. In UFC-BERT, both the diverse control signals and the synthesized image are uniformly represented as a sequence of discrete tokens to be processed by Transformer. Different from existing two-stage autoregressive approaches such as DALL-E and VQGAN, UFC-BERT adopts non-autoregressive generation (NAR) at the second stage to enhance the holistic consistency of the synthesized image, to support preserving specified image blocks, and to improve the synthesis speed. Further, we design a progressive algorithm that iteratively improves the non-autoregressively generated image, with the help of two estimators developed for evaluating the compliance with the controls and evaluating the fidelity of the synthesized image, respectively. Extensive experiments on a newly collected large-scale clothing dataset M2C-Fashion and a facial dataset Multi-Modal CelebA-HQ verify that UFC-BERT can synthesize high-fidelity images that comply with flexible multi-modal controls.
In this paper, we focus on semantically multi-modal image synthesis (SMIS) task, namely, generating multi-modal images at the semantic level. Previous work seeks to use multiple class-specific generators, constraining its usage in datasets with a small number of classes. We instead propose a novel Group Decreasing Network (GroupDNet) that leverages group convolutions in the generator and progressively decreases the group numbers of the convolutions in the decoder. Consequently, GroupDNet is armed with much more controllability on translating semantic labels to natural images and has plausible high-quality yields for datasets with many classes. Experiments on several challenging datasets demonstrate the superiority of GroupDNet on performing the SMIS task. We also show that GroupDNet is capable of performing a wide range of interesting synthesis applications. Codes and models are available at: https://github.com/Seanseattle/SMIS.
In this paper, we introduce a new method for generating an object image from text attributes on a desired location, when the base image is given. One step further to the existing studies on text-to-image generation mainly focusing on the objects appearance, the proposed method aims to generate an object image preserving the given background information, which is the first attempt in this field. To tackle the problem, we propose a multi-conditional GAN (MC-GAN) which controls both the object and background information jointly. As a core component of MC-GAN, we propose a synthesis block which disentangles the object and background information in the training stage. This block enables MC-GAN to generate a realistic object image with the desired background by controlling the amount of the background information from the given base image using the foreground information from the text attributes. From the experiments with Caltech-200 bird and Oxford-102 flower datasets, we show that our model is able to generate photo-realistic images with a resolution of 128 x 128. The source code of MC-GAN is released.
Image annotation aims to annotate a given image with a variable number of class labels corresponding to diverse visual concepts. In this paper, we address two main issues in large-scale image annotation: 1) how to learn a rich feature representation suitable for predicting a diverse set of visual concepts ranging from object, scene to abstract concept; 2) how to annotate an image with the optimal number of class labels. To address the first issue, we propose a novel multi-scale deep model for extracting rich and discriminative features capable of representing a wide range of visual concepts. Specifically, a novel two-branch deep neural network architecture is proposed which comprises a very deep main network branch and a companion feature fusion network branch designed for fusing the multi-scale features computed from the main branch. The deep model is also made multi-modal by taking noisy user-provided tags as model input to complement the image input. For tackling the second issue, we introduce a label quantity prediction auxiliary task to the main label prediction task to explicitly estimate the optimal label number for a given image. Extensive experiments are carried out on two large-scale image annotation benchmark datasets and the results show that our method significantly outperforms the state-of-the-art.
Medical image captioning automatically generates a medical description to describe the content of a given medical image. A traditional medical image captioning model creates a medical description only based on a single medical image input. Hence, an abstract medical description or concept is hard to be generated based on the traditional approach. Such a method limits the effectiveness of medical image captioning. Multi-modal medical image captioning is one of the approaches utilized to address this problem. In multi-modal medical image captioning, textual input, e.g., expert-defined keywords, is considered as one of the main drivers of medical description generation. Thus, encoding the textual input and the medical image effectively are both important for the task of multi-modal medical image captioning. In this work, a new end-to-end deep multi-modal medical image captioning model is proposed. Contextualized keyword representations, textual feature reinforcement, and masked self-attention are used to develop the proposed approach. Based on the evaluation of the existing multi-modal medical image captioning dataset, experimental results show that the proposed model is effective with the increase of +53.2% in BLEU-avg and +18.6% in CIDEr, compared with the state-of-the-art method.
We propose an unsupervised multi-conditional image generation pipeline: cFineGAN, that can generate an image conditioned on two input images such that the generated image preserves the texture of one and the shape of the other input. To achieve this goal, we extend upon the recently proposed work of FineGAN citep{singh2018finegan} and make use of standard as well as shape-biased pre-trained ImageNet models. We demonstrate both qualitatively as well as quantitatively the benefit of using the shape-biased network. We present our image generation result across three benchmark datasets- CUB-200-2011, Stanford Dogs and UT Zappos50k.