No Arabic abstract
We propose an unsupervised multi-conditional image generation pipeline: cFineGAN, that can generate an image conditioned on two input images such that the generated image preserves the texture of one and the shape of the other input. To achieve this goal, we extend upon the recently proposed work of FineGAN citep{singh2018finegan} and make use of standard as well as shape-biased pre-trained ImageNet models. We demonstrate both qualitatively as well as quantitatively the benefit of using the shape-biased network. We present our image generation result across three benchmark datasets- CUB-200-2011, Stanford Dogs and UT Zappos50k.
We present two new metrics for evaluating generative models in the class-conditional image generation setting. These metrics are obtained by generalizing the two most popular unconditional metrics: the Inception Score (IS) and the Frechet Inception Distance (FID). A theoretical analysis shows the motivation behind each proposed metric and links the novel metrics to their unconditional counterparts. The link takes the form of a product in the case of IS or an upper bound in the FID case. We provide an extensive empirical evaluation, comparing the metrics to their unconditional variants and to other metrics, and utilize them to analyze existing generative models, thus providing additional insights about their performance, from unlearned classes to mode collapse.
Attention-based learning for fine-grained image recognition remains a challenging task, where most of the existing methods treat each object part in isolation, while neglecting the correlations among them. In addition, the multi-stage or multi-scale mechanisms involved make the existing methods less efficient and hard to be trained end-to-end. In this paper, we propose a novel attention-based convolutional neural network (CNN) which regulates multiple object parts among different input images. Our method first learns multiple attention region features of each input image through the one-squeeze multi-excitation (OSME) module, and then apply the multi-attention multi-class constraint (MAMC) in a metric learning framework. For each anchor feature, the MAMC functions by pulling same-attention same-class features closer, while pushing different-attention or different-class features away. Our method can be easily trained end-to-end, and is highly efficient which requires only one training stage. Moreover, we introduce Dogs-in-the-Wild, a comprehensive dog species dataset that surpasses similar existing datasets by category coverage, data volume and annotation quality. This dataset will be released upon acceptance to facilitate the research of fine-grained image recognition. Extensive experiments are conducted to show the substantial improvements of our method on four benchmark datasets.
We propose FineGAN, a novel unsupervised GAN framework, which disentangles the background, object shape, and object appearance to hierarchically generate images of fine-grained object categories. To disentangle the factors without supervision, our key idea is to use information theory to associate each factor to a latent code, and to condition the relationships between the codes in a specific way to induce the desired hierarchy. Through extensive experiments, we show that FineGAN achieves the desired disentanglement to generate realistic and diverse images belonging to fine-grained classes of birds, dogs, and cars. Using FineGANs automatically learned features, we also cluster real images as a first attempt at solving the novel problem of unsupervised fine-grained object category discovery. Our code/models/demo can be found at https://github.com/kkanshul/finegan
We propose a method for learning landmark detectors for visual objects (such as the eyes and the nose in a face) without any manual supervision. We cast this as the problem of generating images that combine the appearance of the object as seen in a first example image with the geometry of the object as seen in a second example image, where the two examples differ by a viewpoint change and/or an object deformation. In order to factorize appearance and geometry, we introduce a tight bottleneck in the geometry-extraction process that selects and distils geometry-related features. Compared to standard image generation problems, which often use generative adversarial networks, our generation task is conditioned on both appearance and geometry and thus is significantly less ambiguous, to the point that adopting a simple perceptual loss formulation is sufficient. We demonstrate that our approach can learn object landmarks from synthetic image deformations or videos, all without manual supervision, while outperforming state-of-the-art unsupervised landmark detectors. We further show that our method is applicable to a large variety of datasets - faces, people, 3D objects, and digits - without any modifications.
Localized Narratives is a dataset with detailed natural language descriptions of images paired with mouse traces that provide a sparse, fine-grained visual grounding for phrases. We propose TReCS, a sequential model that exploits this grounding to generate images. TReCS uses descriptions to retrieve segmentation masks and predict object labels aligned with mouse traces. These alignments are used to select and position masks to generate a fully covered segmentation canvas; the final image is produced by a segmentation-to-image generator using this canvas. This multi-step, retrieval-based approach outperforms existing direct text-to-image generation models on both automatic metrics and human evaluations: overall, its generated images are more photo-realistic and better match descriptions.