Do you want to publish a course? Click here

Scalar Leptoquarks, Baryon Number Violation and Pati-Salam Symmetry

347   0   0.0 ( 0 )
 Added by Clara Murgui
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

One or more scalar leptoquarks with masses around a few TeV may provide a solution to some of the flavor anomalies that have been observed. We discuss the impact of such new degrees on baryon number violation when the theory is embedded in a Pati-Salam model. The Pati-Salam embedding can suppress renormalizable and dimension-five baryon number violation in some cases. Our work extends the results of Assad, Grinstein, and Fornal who considered the same issue for vector leptoquarks.

rate research

Read More

This report, prepared for the Community Planning Study - Snowmass 2013 - summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Present and future nucleon decay search experiments using large underground detectors, as well as planned neutron-antineutron oscillation search experiments with free neutron beams are highlighted.
Composite Higgs models can be extended to the Planck scale by means of the partially unified partial compositeness (PUPC) framework. We present in detail the Techni-Pati-Salam model, based on a renormalizable gauge theory $SU(8)_{PS}times SU(2)_Ltimes SU(2)_R$. We demonstrate that masses and mixings for all generations of standard model fermions can be obtained via partial compositeness at low energy, with four-fermion operators mediated by either heavy gauge bosons or scalars. The strong dynamics is predicted to be that of a confining $Sp(4)_{rm HC}$ gauge group, with hyper-fermions in the fundamental and two-index anti-symmetric representations, with fixed multiplicities. This motivates for Lattice studies of the Infra-Red near-conformal walking phase, with results that may validate or rule out the model. This is the first complete and realistic attempt at providing an Ultra-Violet completion for composite Higgs models with top partial compositeness. In the baryon-number conserving vacuum, the theory also predicts a Dark Matter candidate, with mass in the few TeV range, protected by semi-integer baryon number.
We construct simple renormalizable extensions of the standard model where the leading baryon number violating processes have $Delta B = pm Delta L = -2$. These models contain additional scalars. The simplest models contain a color singlet and a colored sextet. For such baryon number violation to be observed in experiments, the scalars cannot be much heavier than a few TeV. We find that such models are strongly constrained by LHC physics, LEP physics, and flavor physics.
We discuss the possible connection between the scale for baryon number violation and the cosmological bound on the dark matter relic density. A simple gauge theory for baryon number which predicts the existence of a leptophobic cold dark matter particle candidate is investigated. In this context, the dark matter candidate is a Dirac fermion with mass defined by the new symmetry breaking scale. Using the cosmological bounds on the dark matter relic density we find the upper bound on the symmetry breaking scale around 200 TeV. The properties of the leptophobic dark matter candidate are investigated in great detail and we show the prospects to test this theory at current and future experiments. We discuss the main implications for the mechanisms to explain the matter and antimatter asymmetry in the Universe.
We analyze the neutrino mass spectrum and discuss the extra-dimensional interpretation of a three-site Pati-Salam model which i) unifies all families of quark and leptons, ii) provides a natural description of the Standard Model Yukawa couplings, iii) could account for the recent $B$-physics anomalies. The key feature of the model is a breaking of the Pati-Salam and electroweak gauge symmetries localized on opposite sites, communicated to the other sites in an attenuated manner via nearest-neighbor interactions. We show that in this context gauge-singlet fermions localized on each site, receiving hierarchical Majorana masses, can allow the implementation of an inverse seesaw mechanism leading to light anarchic neutrino masses consistent with data. The continuum limit of this three-site setup has a natural interpretation in terms of a warped extra dimension with three defects, where the required exponential hierarchies can be achieved from $mathcal{O}(1)$ differences in the bulk field masses.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا