Do you want to publish a course? Click here

Baryon Number Violation

287   0   0.0 ( 0 )
 Added by K. S. Babu
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

This report, prepared for the Community Planning Study - Snowmass 2013 - summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Present and future nucleon decay search experiments using large underground detectors, as well as planned neutron-antineutron oscillation search experiments with free neutron beams are highlighted.



rate research

Read More

We discuss the possible connection between the scale for baryon number violation and the cosmological bound on the dark matter relic density. A simple gauge theory for baryon number which predicts the existence of a leptophobic cold dark matter particle candidate is investigated. In this context, the dark matter candidate is a Dirac fermion with mass defined by the new symmetry breaking scale. Using the cosmological bounds on the dark matter relic density we find the upper bound on the symmetry breaking scale around 200 TeV. The properties of the leptophobic dark matter candidate are investigated in great detail and we show the prospects to test this theory at current and future experiments. We discuss the main implications for the mechanisms to explain the matter and antimatter asymmetry in the Universe.
We explore the generation of the baryon asymmetry in an extension of the Standard Model where the lepton number is promoted to a $U(1)_ell$ gauge symmetry with an associated $Z^prime$ gauge boson. This is based on a novel electroweak baryogenesis mechanism first proposed by us in Ref. cite{Carena:2018cjh}. Extra fermionic degrees of freedom - including a fermionic dark matter $chi$ - are introduced in the dark sector for anomaly cancellation. Lepton number is spontaneously broken at high scale and the effective theory, containing the Standard Model, the $Z^prime$, the fermionic dark matter, and an additional complex scalar field $S$, violates CP in the dark sector. The complex scalar field couples to the Higgs portal and is essential in enabling a strong first order phase transition. Dark CP violation is diffused in front of the bubble walls and creates a chiral asymmetry for $chi$, which in turn creates a chemical potential for the Standard Model leptons. Weak sphalerons are then in charge of transforming the net lepton charge asymmetry into net baryon number. We explore the model phenomenology related to the leptophilic $Z^prime$, the dark matter candidate, the Higgs boson and the additional scalar, as well as implications for electric dipole moments. We also discuss the case when baryon number $U(1)_B$ is promoted to a gauge symmetry, and discuss electroweak baryogenesis and its corresponding phenomenology.
346 - Clara Murgui , Mark B. Wise 2021
One or more scalar leptoquarks with masses around a few TeV may provide a solution to some of the flavor anomalies that have been observed. We discuss the impact of such new degrees on baryon number violation when the theory is embedded in a Pati-Salam model. The Pati-Salam embedding can suppress renormalizable and dimension-five baryon number violation in some cases. Our work extends the results of Assad, Grinstein, and Fornal who considered the same issue for vector leptoquarks.
We investigate the possibility to find an ultraviolet completion of the simple extensions of the Standard Model where baryon number is a local symmetry. In the context of such theories one can understand the spontaneous breaking of baryon number at the low scale and the proton stability. We find a simple theory based on SU(4)_C x SU(3)_L x SU(3)_R where baryon number is embedded in a non-Abelian gauge symmetry. We discuss the main features of the theory and the possible implications for experiments. This theory predicts stable colored and/or fractional electric charged fields which can give rise to very exotic signatures at the Large Hadron Collider experiments such as CMS and ATLAS. We further discuss the embedding in a gauge theory based on SU(4)_C x SU(4)_L x SU(4)_R which could define the way to achieve the unification of the gauge interactions at the low scale.
If grand unification is real, searches for baryon-number violation should be included on the list of observables that may reveal information regarding the origin of neutrino masses. Making use of an effective-operator approach and assuming that nature is SU(5) invariant at very short distances, we estimate the consequences of different scenarios that lead to light Majorana neutrinos for low-energy phenomena that violate baryon number minus lepton number (B-L) by two (or more) units, including neutron-antineutron oscillations and B-L violating nucleon decays. We find that, among all possible effective theories of lepton-number violation that lead to nonzero neutrino masses, only a subset is, broadly speaking, consistent with grand unification.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا