No Arabic abstract
In this paper, we investigate conventional communication-based chaotic waveforms in the context of wireless power transfer (WPT). Particularly, we present a differential chaos shift keying (DCSK)-based WPT architecture, that employs an analog correlator at the receiver, in order to boost the energy harvesting (EH) performance. We take into account the nonlinearities of the EH process and derive closed-form analytical expressions for the harvested direct current (DC) under a generalized Nakagami-m block fading model. We show that, in this framework, both the peak-to-average-power-ratio of the received signal and the harvested DC, depend on the parameters of the transmitted waveform. Furthermore, we investigate the case of deterministic unmodulated chaotic waveforms and demonstrate that, in the absence of a correlator, modulation does not affect the achieved harvested DC. On the other hand, it is shown that for scenarios with a correlator-aided receiver, DCSK significantly outperforms the unmodulated case. Based on this observation, we propose a novel DCSK-based signal design, which further enhances the WPT capability of the proposed architecture; corresponding analytical expressions for the harvested DC are also derived. Our results demonstrate that the proposed architecture and the associated signal design, can achieve significant EH gains in DCSK-based WPT systems. Furthermore, we also show that, even by taking into account the nonlinearities at the transmitter amplifier, the proposed chaotic waveform performs significantly better in terms of EH, when compared with the existing multisine signals.
In this work, we investigate differential chaos shift keying (DCSK), a communication-based waveform, in the context of wireless power transfer (WPT). Particularly, we present a DCSK-based WPT architecture, that employs an analog correlator at the receiver in order to boost the energy harvesting (EH) performance. By taking into account the nonlinearities of the EH process, we derive closed-form analytical expressions for the peak-to-average-power-ratio of the received signal as well as the harvested power. Nontrivial design insights are provided, where it is shown how the parameters of the transmitted waveform affects the EH performance. Furthermore, it is demonstrated that the employment of a correlator at the receiver achieves significant EH gains in DCSK-based WPT systems.
This letter studies an unmanned aerial vehicle-enabled wireless power transfer system within a radio-map-based robust positioning design.
In this paper, we design and experiment a far-field wireless power transfer (WPT) architecture based on distributed antennas, so-called WPT DAS, that dynamically selects transmit antenna and frequency to increase the output dc power. Uniquely, spatial and frequency diversities are jointly exploited in the proposed WPT DAS with low complexity, low cost, and flexible deployment to combat the wireless fading channel. A numerical experiment is designed to show the benefits using antenna and frequency selections in spatially and frequency selective fading channels for single-user and multi-user cases. Accordingly, the proposed WPT DAS for single-user and two-user cases is prototyped. At the transmitter, we adopt antenna selection to exploit spatial diversity and adopt frequency selection to exploit frequency diversity. A low-complexity over-the-air limited feedback using an IEEE 802.15.4 RF interface is designed for antenna and frequency selections and reporting from the receiver to the transmitter. The proposed WPT DAS prototype is demonstrated in a real indoor environment. The measurements show that WPT DAS can boost the output dc power by up to 30 dB in single-user case and boost the sum of output dc power by up to 21.8 dB in two-user case and broaden the service coverage area in a low cost, low complexity, and flexible manner.
In this note we consider differential equations driven by a signal $x$ which is $gamma$-Holder with $gamma>1/3$, and is assumed to possess a lift as a rough path. Our main point is to obtain existence of solutions when the coefficients of the equation behave like power functions of the form $|xi|^{kappa}$ with $kappain(0,1)$. Two different methods are used in order to construct solutions: (i) In a 1-d setting, we resort to a rough version of Lampertis transform. (ii) For multidimensional situations, we quantify some improved regularity estimates when the solution approaches the origin.
By reconfiguring the propagation environment of electromagnetic waves artificially, reconfigurable intelligent surfaces (RISs) have been regarded as a promising and revolutionary hardware technology to improve the energy and spectrum efficiency of wireless networks. In this paper, we study a RIS aided multiuser multiple-input single-output (MISO) wireless power transfer (WPT) system, where the transmitter is equipped with a constant-envelope analog beamformer. We formulate a novel problem to maximize the total received power of all the users by jointly optimizing the beamformer at transmitter and the phase shifts at the RISs, subject to the individual minimum received power constraints of users. We further solve the problem iteratively with a closed-form expression for each step. Numerical results show the performance gain of deploying RIS and the effectiveness of the proposed algorithm.