No Arabic abstract
Incorporating external knowledge into Named Entity Recognition (NER) systems has been widely studied in the generic domain. In this paper, we focus on clinical domain where only limited data is accessible and interpretability is important. Recent advancement in technology and the acceleration of clinical trials has resulted in the discovery of new drugs, procedures as well as medical conditions. These factors motivate towards building robust zero-shot NER systems which can quickly adapt to new medical terminology. We propose an auxiliary gazetteer model and fuse it with an NER system, which results in better robustness and interpretability across different clinical datasets. Our gazetteer based fusion model is data efficient, achieving +1.7 micro-F1 gains on the i2b2 dataset using 20% training data, and brings + 4.7 micro-F1 gains on novel entity mentions never presented during training. Moreover, our fusion model is able to quickly adapt to new mentions in gazetteers without re-training and the gains from the proposed fusion model are transferable to related datasets.
Named entity recognition (NER) is a well-studied task in natural language processing. However, the widely-used sequence labeling framework is difficult to detect entities with nested structures. In this work, we view nested NER as constituency parsing with partially-observed trees and model it with partially-observed TreeCRFs. Specifically, we view all labeled entity spans as observed nodes in a constituency tree, and other spans as latent nodes. With the TreeCRF we achieve a uniform way to jointly model the observed and the latent nodes. To compute the probability of partial trees with partial marginalization, we propose a variant of the Inside algorithm, the textsc{Masked Inside} algorithm, that supports different inference operations for different nodes (evaluation for the observed, marginalization for the latent, and rejection for nodes incompatible with the observed) with efficient parallelized implementation, thus significantly speeding up training and inference. Experiments show that our approach achieves the state-of-the-art (SOTA) F1 scores on the ACE2004, ACE2005 dataset, and shows comparable performance to SOTA models on the GENIA dataset. Our approach is implemented at: url{https://github.com/FranxYao/Partially-Observed-TreeCRFs}.
This paper presents a simple and effective approach in low-resource named entity recognition (NER) based on multi-hop dependency trigger. Dependency trigger refer to salient nodes relative to a entity in the dependency graph of a context sentence. Our main observation is that there often exists trigger which play an important role to recognize the location and type of entity in sentence. Previous research has used manual labelling of trigger. Our main contribution is to propose use a syntactic parser to automatically annotate trigger. Experiments on two English datasets (CONLL 2003 and BC5CDR) show that the proposed method is comparable to the previous trigger-based NER model.
Named entity recognition (NER) is a vital task in spoken language understanding, which aims to identify mentions of named entities in text e.g., from transcribed speech. Existing neural models for NER rely mostly on dedicated word-level representations, which suffer from two main shortcomings. First, the vocabulary size is large, yielding large memory requirements and training time. Second, these models are not able to learn morphological or phonological representations. To remedy the above shortcomings, we adopt a neural solution based on bidirectional LSTMs and conditional random fields, where we rely on subword units, namely characters, phonemes, and bytes. For each word in an utterance, our model learns a representation from each of the subword units. We conducted experiments in a real-world large-scale setting for the use case of a voice-controlled device covering four languages with up to 5.5M utterances per language. Our experiments show that (1) with increasing training data, performance of models trained solely on subword units becomes closer to that of models with dedicated word-level embeddings (91.35 vs 93.92 F1 for English), while using a much smaller vocabulary size (332 vs 74K), (2) subword units enhance models with dedicated word-level embeddings, and (3) combining different subword units improves performance.
Recently, word enhancement has become very popular for Chinese Named Entity Recognition (NER), reducing segmentation errors and increasing the semantic and boundary information of Chinese words. However, these methods tend to ignore the information of the Chinese character structure after integrating the lexical information. Chinese characters have evolved from pictographs since ancient times, and their structure often reflects more information about the characters. This paper presents a novel Multi-metadata Embedding based Cross-Transformer (MECT) to improve the performance of Chinese NER by fusing the structural information of Chinese characters. Specifically, we use multi-metadata embedding in a two-stream Transformer to integrate Chinese character features with the radical-level embedding. With the structural characteristics of Chinese characters, MECT can better capture the semantic information of Chinese characters for NER. The experimental results obtained on several well-known benchmarking datasets demonstrate the merits and superiority of the proposed MECT method.footnote{The source code of the proposed method is publicly available at https://github.com/CoderMusou/MECT4CNER.
This paper describes performance of CRF based systems for Named Entity Recognition (NER) in Indian language as a part of ICON 2013 shared task. In this task we have considered a set of language independent features for all the languages. Only for English a language specific feature, i.e. capitalization, has been added. Next the use of gazetteer is explored for Bengali, Hindi and English. The gazetteers are built from Wikipedia and other sources. Test results show that the system achieves the highest F measure of 88% for English and the lowest F measure of 69% for both Tamil and Telugu. Note that for the least performing two languages no gazetteer was used. NER in Bengali and Hindi finds accuracy (F measure) of 87% and 79%, respectively.