Do you want to publish a course? Click here

Generalized solutions to opinion dynamics models with discontinuities

112   0   0.0 ( 0 )
 Added by Paolo Frasca
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Social dynamics models may present discontinuities in the right-hand side of the dynamics for multiple reasons, including topology changes and quantization. Several concepts of generalized solutions for discontinuous equations are available in the literature and are useful to analyze these models. In this chapter, we study Caratheodory and Krasovsky generalized solutions for discontinuous models of opinion dynamics with state dependent interactions. We consider two definitions of bounded confidence interactions, which we respectively call metric and topological: in the former, individuals interact if their opinions are closer than a threshold; in the latter, individuals interact with a fixed number of nearest neighbors. We compare the dynamics produced by the two kinds of interactions, in terms of existence, uniqueness and asymptotic behavior of different types of solutions.



rate research

Read More

We study generalizations of the Hegselmann-Krause (HK) model for opinion dynamics, incorporating features and parameters that are natural components of observed social systems. The first generalization is one where the strength of influence depends on the distance of the agents opinions. Under this setup, we identify conditions under which the opinions converge in finite time, and provide a qualitative characterization of the equilibrium. We interpret the HK model opinion update rule as a quadratic cost-minimization rule. This enables a second generalization: a family of update rules which possess different equilibrium properties. Subsequently, we investigate models in which a external force can behave strategically to modulate/influence user updates. We consider cases where this external force can introduce additional agents and cases where they can modify the cost structures for other agents. We describe and analyze some strategies through which such modulation may be possible in an order-optimal manner. Our simulations demonstrate that generalized dynamics differ qualitatively and quantitatively from traditional HK dynamics.
Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]
Opinion dynamics concerns social processes through which populations or groups of individuals agree or disagree on specific issues. As such, modelling opinion dynamics represents an important research area that has been progressively acquiring relevance in many different domains. Existing approaches have mostly represented opinions through discrete binary or continuous variables by exploring a whole panoply of cases: e.g. independence, noise, external effects, multiple issues. In most of these cases the crucial ingredient is an attractive dynamics through which similar or similar enough agents get closer. Only rarely the possibility of explicit disagreement has been taken into account (i.e., the possibility for a repulsive interaction among individuals opinions), and mostly for discrete or 1-dimensional opinions, through the introduction of additional model parameters. Here we introduce a new model of opinion formation, which focuses on the interplay between the possibility of explicit disagreement, modulated in a self-consistent way by the existing opinions overlaps between the interacting individuals, and the effect of external information on the system. Opinions are modelled as a vector of continuous variables related to multiple possible choices for an issue. Information can be modulated to account for promoting multiple possible choices. Numerical results show that extreme information results in segregation and has a limited effect on the population, while milder messages have better success and a cohesion effect. Additionally, the initial condition plays an important role, with the population forming one or multiple clusters based on the initial average similarity between individuals, with a transition point depending on the number of opinion choices.
Modelling efforts in opinion dynamics have to a large extent ignored that opinion exchange between individuals can also have an effect on how willing they are to express their opinion publicly. Here, we introduce a model of public opinion expression. Two groups of agents with different opinion on an issue interact with each other, changing the willingness to express their opinion according to whether they perceive themselves as part of the majority or minority opinion. We formulate the model as a multi-group majority game and investigate the Nash equilibria. We also provide a dynamical systems perspective: Using the reinforcement learning algorithm of $Q$-learning, we reduce the $N$-agent system in a mean-field approach to two dimensions which represent the two opinion groups. This two-dimensional system is analyzed in a comprehensive bifurcation analysis of its parameters. The model identifies social-structural conditions for public opinion predominance of different groups. Among other findings, we show under which circumstances a minority can dominate public discourse.
271 - Weiguo Xia , Mengbin Ye , Ji Liu 2019
This paper analyzes a nonlinear opinion dynamics model which generalizes the DeGroot model by introducing a bias parameter for each individual. The original DeGroot model is recovered when the bias parameter is equal to zero. The magnitude of this parameter reflects an individuals degree of bias when assimilating new opinions, and depending on the magnitude, an individual is said to have weak, intermediate, and strong bias. The opinions of the individuals lie between 0 and 1. It is shown that for strongly connected networks, the equilibria with all elements equal identically to the extreme value 0 or 1 is locally exponentially stable, while the equilibrium with all elements equal to the neutral consensus value of 1/2 is unstable. Regions of attraction for the extreme consensus equilibria are given. For the equilibrium consisting of both extreme values 0 and 1, which corresponds to opinion polarization according to the model, it is shown that the equilibrium is unstable for all strongly connected networks if individuals all have weak bias, becomes locally exponentially stable for complete and two-island networks if individuals all have strong bias, and its stability heavily depends on the network topology when individuals have intermediate bias. Analysis on star graphs and simulations show that additional equilibria may exist where individuals form clusters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا