No Arabic abstract
This paper analyzes a nonlinear opinion dynamics model which generalizes the DeGroot model by introducing a bias parameter for each individual. The original DeGroot model is recovered when the bias parameter is equal to zero. The magnitude of this parameter reflects an individuals degree of bias when assimilating new opinions, and depending on the magnitude, an individual is said to have weak, intermediate, and strong bias. The opinions of the individuals lie between 0 and 1. It is shown that for strongly connected networks, the equilibria with all elements equal identically to the extreme value 0 or 1 is locally exponentially stable, while the equilibrium with all elements equal to the neutral consensus value of 1/2 is unstable. Regions of attraction for the extreme consensus equilibria are given. For the equilibrium consisting of both extreme values 0 and 1, which corresponds to opinion polarization according to the model, it is shown that the equilibrium is unstable for all strongly connected networks if individuals all have weak bias, becomes locally exponentially stable for complete and two-island networks if individuals all have strong bias, and its stability heavily depends on the network topology when individuals have intermediate bias. Analysis on star graphs and simulations show that additional equilibria may exist where individuals form clusters.
Social dynamics models may present discontinuities in the right-hand side of the dynamics for multiple reasons, including topology changes and quantization. Several concepts of generalized solutions for discontinuous equations are available in the literature and are useful to analyze these models. In this chapter, we study Caratheodory and Krasovsky generalized solutions for discontinuous models of opinion dynamics with state dependent interactions. We consider two definitions of bounded confidence interactions, which we respectively call metric and topological: in the former, individuals interact if their opinions are closer than a threshold; in the latter, individuals interact with a fixed number of nearest neighbors. We compare the dynamics produced by the two kinds of interactions, in terms of existence, uniqueness and asymptotic behavior of different types of solutions.
We investigate opinion dynamics in multi-agent networks when a bias toward one of two possible opinions exists; for example, reflecting a status quo vs a superior alternative. Starting with all agents sharing an initial opinion representing the status quo, the system evolves in steps. In each step, one agent selected uniformly at random adopts the superior opinion with some probability $alpha$, and with probability $1 - alpha$ it follows an underlying update rule to revise its opinion on the basis of those held by its neighbors. We analyze convergence of the resulting process under two well-known update rules, namely majority and voter. The framework we propose exhibits a rich structure, with a non-obvious interplay between topology and underlying update rule. For example, for the voter rule we show that the speed of convergence bears no significant dependence on the underlying topology, whereas the picture changes completely under the majority rule, where network density negatively affects convergence. We believe that the model we propose is at the same time simple, rich, and modular, affording mathematical characterization of the interplay between bias, underlying opinion dynamics, and social structure in a unified setting.
We study the joint evolution of worldviews by proposing a model of opinion dynamics, which is inspired in notions from evolutionary ecology. Agents update their opinion on a specific issue based on their propensity to change -- asserted by the social neighbours -- weighted by their mutual similarity on other issues. Agents are, therefore, more influenced by neighbours with similar worldviews (set of opinions on various issues), resulting in a complex co-evolution of each opinion. Simulations show that the worldview evolution exhibits events of intermittent polarization when the social network is scale-free. This, in turn, trigger extreme crashes and surges in the popularity of various opinions. Using the proposed model, we highlight the role of network structure, bounded rationality of agents, and the role of key influential agents in causing polarization and intermittent reformation of worldviews on scale-free networks.
In this paper, a nonlinear revision protocol is proposed and embedded into the traffic evolution equation of the classical proportional-switch adjustment process (PAP), developing the present nonlinear pairwise swapping dynamics (NPSD) to describe the selfish rerouting evolutionary game. It is demonstrated that i) NPSD and PAP require the same amount of network information acquisition in the route-swaps, ii) NPSD is able to prevent the over-swapping deficiency under a plausible behavior description; iii) NPSD can maintain the solution invariance, which makes the trial and error process to identify a feasible step-length in a NPSD-based swapping algorithm is unnecessary, and iv) NPSD is a rational behavior swapping process and the continuous-time NPSD is globally convergent. Using the day-to-day NPSD, a numerical example is conducted to explore the effects of the reaction sensitivity on traffic evolution and characterize the convergence of discrete-time NPSD.
Peoples opinions evolve over time as they interact with their friends, family, colleagues, and others. In the study of opinion dynamics on networks, one often encodes interactions between people in the form of dyadic relationships, but many social interactions in real life are polyadic (i.e., they involve three or more people). In this paper, we extend an asynchronous bounded-confidence model (BCM) on graphs, in which nodes are connected pairwise by edges, to an asynchronous BCM on hypergraphs, in which arbitrarily many nodes can be connected by a single hyperedge. We show that our hypergraph BCM converges to consensus under a wide range of initial conditions for the opinions of the nodes, including for non-uniform and asymmetric initial opinion distributions. We also show that, under suitable conditions, echo chambers can form on hypergraphs with community structure. We demonstrate that the opinions of individuals can sometimes jump from one opinion cluster to another in a single time step, a phenomenon (which we call ``opinion jumping) that is not possible in standard dyadic BCMs. Additionally, we observe that there is a phase transition in the convergence time on {a complete hypergraph} when the variance $sigma^2$ of the initial opinion distribution equals the confidence bound $c$. We prove that the convergence time grows at least exponentially fast with the number of nodes when $sigma^2 > c$ and the initial opinions are normally distributed. Therefore, to determine the convergence properties of our hypergraph BCM when the variance and the number of hyperedges are both large, it is necessary to use analytical methods instead of relying only on Monte Carlo simulations.