Do you want to publish a course? Click here

3D Segmentation Learning from Sparse Annotations and Hierarchical Descriptors

149   0   0.0 ( 0 )
 Added by Peng Yin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

One of the main obstacles to 3D semantic segmentation is the significant amount of endeavor required to generate expensive point-wise annotations for fully supervised training. To alleviate manual efforts, we propose GIDSeg, a novel approach that can simultaneously learn segmentation from sparse annotations via reasoning global-regional structures and individual-vicinal properties. GIDSeg depicts global- and individual- relation via a dynamic edge convolution network coupled with a kernelized identity descriptor. The ensemble effects are obtained by endowing a fine-grained receptive field to a low-resolution voxelized map. In our GIDSeg, an adversarial learning module is also designed to further enhance the conditional constraint of identity descriptors within the joint feature distribution. Despite the apparent simplicity, our proposed approach achieves superior performance over state-of-the-art for inferencing 3D dense segmentation with only sparse annotations. Particularly, with $5%$ annotations of raw data, GIDSeg outperforms other 3D segmentation methods.



rate research

Read More

In this paper, we introduce a method for visual relocalization using the geometric information from a 3D surfel map. A visual database is first built by global indices from the 3D surfel map rendering, which provides associations between image points and 3D surfels. Surfel reprojection constraints are utilized to optimize the keyframe poses and map points in the visual database. A hierarchical camera relocalization algorithm then utilizes the visual database to estimate 6-DoF camera poses. Learned descriptors are further used to improve the performance in challenging cases. We present evaluation under real-world conditions and simulation to show the effectiveness and efficiency of our method, and make the final camera poses consistently well aligned with the 3D environment.
Training Convolutional Neural Networks (CNNs) for very high resolution images requires a large quantity of high-quality pixel-level annotations, which is extremely labor- and time-consuming to produce. Moreover, professional photo interpreters might have to be involved for guaranteeing the correctness of annotations. To alleviate such a burden, we propose a framework for semantic segmentation of aerial images based on incomplete annotations, where annotators are asked to label a few pixels with easy-to-draw scribbles. To exploit these sparse scribbled annotations, we propose the FEature and Spatial relaTional regulArization (FESTA) method to complement the supervised task with an unsupervised learning signal that accounts for neighbourhood structures both in spatial and feature terms.
Instance segmentation on point clouds is a fundamental task in 3D scene perception. In this work, we propose a concise clustering-based framework named HAIS, which makes full use of spatial relation of points and point sets. Considering clustering-based methods may result in over-segmentation or under-segmentation, we introduce the hierarchical aggregation to progressively generate instance proposals, i.e., point aggregation for preliminarily clustering points to sets and set aggregation for generating complete instances from sets. Once the complete 3D instances are obtained, a sub-network of intra-instance prediction is adopted for noisy points filtering and mask quality scoring. HAIS is fast (only 410ms per frame) and does not require non-maximum suppression. It ranks 1st on the ScanNet v2 benchmark, achieving the highest 69.9% AP50 and surpassing previous state-of-the-art (SOTA) methods by a large margin. Besides, the SOTA results on the S3DIS dataset validate the good generalization ability. Code will be available at https://github.com/hustvl/HAIS.
For relocalization in large-scale point clouds, we propose the first approach that unifies global place recognition and local 6DoF pose refinement. To this end, we design a Siamese network that jointly learns 3D local feature detection and description directly from raw 3D points. It integrates FlexConv and Squeeze-and-Excitation (SE) to assure that the learned local descriptor captures multi-level geometric information and channel-wise relations. For detecting 3D keypoints we predict the discriminativeness of the local descriptors in an unsupervised manner. We generate the global descriptor by directly aggregating the learned local descriptors with an effective attention mechanism. In this way, local and global 3D descriptors are inferred in one single forward pass. Experiments on various benchmarks demonstrate that our method achieves competitive results for both global point cloud retrieval and local point cloud registration in comparison to state-of-the-art approaches. To validate the generalizability and robustness of our 3D keypoints, we demonstrate that our method also performs favorably without fine-tuning on the registration of point clouds that were generated by a visual SLAM system. Code and related materials are available at https://vision.in.tum.de/research/vslam/dh3d.
103 - Yichen Li , Kaichun Mo , Lin Shao 2020
Autonomous assembly is a crucial capability for robots in many applications. For this task, several problems such as obstacle avoidance, motion planning, and actuator control have been extensively studied in robotics. However, when it comes to task specification, the space of possibilities remains underexplored. Towards this end, we introduce a novel problem, single-image-guided 3D part assembly, along with a learningbased solution. We study this problem in the setting of furniture assembly from a given complete set of parts and a single image depicting the entire assembled object. Multiple challenges exist in this setting, including handling ambiguity among parts (e.g., slats in a chair back and leg stretchers) and 3D pose prediction for parts and part subassemblies, whether visible or occluded. We address these issues by proposing a two-module pipeline that leverages strong 2D-3D correspondences and assembly-oriented graph message-passing to infer part relationships. In experiments with a PartNet-based synthetic benchmark, we demonstrate the effectiveness of our framework as compared with three baseline approaches.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا