Do you want to publish a course? Click here

The orbital angular momentum of a turbulent atmosphere and its impact on propagating structured light fields

230   0   0.0 ( 0 )
 Added by Asher Klug
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

When structured light is propagated through the atmosphere, turbulence results in modal scattering and distortions. An extensively studied example is that of light carrying orbital angular momentum (OAM), where the atmosphere is treated as a phase distortion and numerical tools extract the resulting modal cross-talk. This approach focuses on the light itself, perturbed by the atmosphere, yet does not easily lend itself to physical insights, and fails to ask a pertinent question: where did the OAM that the beam gained or lost come from? Here, we address this by forgoing the beam and instead calculating the OAM of the atmosphere itself. With this intuitive model we are able to draw general conclusions on the impact of atmospheric turbulence on OAM beams, which we confirm experimentally. Our work alters the perspective on this problem, opening new insights into the physics of OAM in turbulence, and is easily extended to other structured light fields through arbitrary aberrations.

rate research

Read More

Manipulation of orbital angular momentum (OAM) of light is essential in OAM-based optical systems. Especially, OAM divider, which can convert the incoming OAM mode into one or several new smaller modes in proportion at different spatial paths, is very useful in OAM-based optical networks. However, this useful tool was never reported yet. For the first time, we put forward a passive OAM divider based on coordinate transformation. The device consists of a Cartesian to log-polar coordinate converter and an inverse converter. The first converter converts the OAM light into a rectangular-shaped plane light with a transverse phase gradient. And the second converter converts the plane light into multiple diffracted light. The OAM of zeroth-order diffracted light is the product of the input OAM and the scaling parameter. The residual light is output from other diffracted orders. Furthermore, we extend the scheme to realize equal N-dividing of OAM and arbitrary dividing of OAM. The ability of dividing OAM shows huge potential for OAM-based classical and quantum information processing.
Light beams carrying orbital angular momentum are key resources in modern photonics. In many applications, the ability of measuring the complex spectrum of structured light beams in terms of these fundamental modes is crucial. Here we propose and experimentally validate a simple method that achieves this goal by digital analysis of the interference pattern formed by the light beam and a reference field. Our approach allows one to characterize the beam radial distribution also, hence retrieving the entire information contained in the optical field. Setup simplicity and reduced number of measurements could make this approach practical and convenient for the characterization of structured light fields.
We have experimentally studied the degradation of mode purity for light beams carrying orbital angular momentum (OAM) propagating through simulated atmospheric turbulence. The turbulence is modeled as a randomly varying phase aberration, which obeys statistics postulated by Kolmogorov turbulence theory. We introduce this simulated turbulence through the use of a phase-only spatial light modulator. Once the turbulence is introduced, the degradation in mode quality results in cross-talk between OAM modes. We study this cross-talk in OAM for eleven modes, showing that turbulence uniformly degrades the purity of all the modes within this range, irrespective of mode number.
The existing methods for measuring the orbital-angular-momentum (OAM) spectrum suffer from issues such as poor efficiency, strict interferometric stability requirements, and too much loss. Furthermore, most techniques inevitably discard part of the field and measure only a post-selected portion of the true spectrum. Here, we propose and demonstrate an interferometric technique for measuring the true OAM spectrum of optical fields in a single-shot manner. Our technique directly encodes the OAM-spectrum information in the azimuthal intensity profile of the output interferogram. In the absence of noise, the spectrum can be fully decoded using a single acquisition of the output interferogram, and, in the presence of noise, acquisition of two suitable interferograms is sufficient for the purpose. As an important application of our technique, we demonstrate measurements of the angular Schmidt spectrum of the entangled photons produced by parametric down-conversion and report a broad spectrum with the angular Schmidt number 82.1.
Light with spatiotemporal orbital angular momentum (ST-OAM) is a recently discovered type of structured and localized electromagnetic field. This field carries characteristic space-time spiral phase structure and transverse intrinsic OAM. In this work, we present the generation and characterization of the second-harmonic of ST-OAM pulses. We uncovered the conservation of transverse OAM in a second-harmonic generation process, where the space-time topological charge of the fundamental field is doubled along with the optical frequency. Our experiment thus suggests a general ST-OAM nonlinear scaling rule - analogous to that in conventional OAM of light. Furthermore, we observe that the topology of a second-harmonic ST-OAM pulse can be modified by complex spatiotemporal astigmatism, giving rise to multiple phase singularities separated in space and time. Our study opens a new route for nonlinear conversion and scaling of light carrying ST-OAM with the potential for driving other secondary ST-OAM sources of electromagnetic fields and beyond.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا