No Arabic abstract
The performance of speaker recognition system is highly dependent on the amount of speech used in enrollment and test. This work presents a detailed experimental review and analysis of the GMM-SVM based speaker recognition system in presence of duration variability. This article also reports a comparison of the performance of GMM-SVM classifier with its precursor technique Gaussian mixture model-universal background model (GMM-UBM) classifier in presence of duration variability. The goal of this research work is not to propose a new algorithm for improving speaker recognition performance in presence of duration variability. However, the main focus of this work is on utterance partitioning (UP), a commonly used strategy to compensate the duration variability issue. We have analysed in detailed the impact of training utterance partitioning in speaker recognition performance under GMM-SVM framework. We further investigate the reason why the utterance partitioning is important for boosting speaker recognition performance. We have also shown in which case the utterance partitioning could be useful and where not. Our study has revealed that utterance partitioning does not reduce the data imbalance problem of the GMM-SVM classifier as claimed in earlier study. Apart from these, we also discuss issues related to the impact of parameters such as number of Gaussians, supervector length, amount of splitting required for obtaining better performance in short and long duration test conditions from speech duration perspective. We have performed the experiments with telephone speech from POLYCOST corpus consisting of 130 speakers.
In this paper, we discuss the issues in automatic recognition of vowels in Persian language. The present work focuses on new statistical method of recognition of vowels as a basic unit of syllables. First we describe a vowel detection system then briefly discuss how the detected vowels can feed to recognition unit. According to pattern recognition, Support Vector Machines (SVM) as a discriminative classifier and Gaussian mixture model (GMM) as a generative model classifier are two most popular techniques. Current state-ofthe- art systems try to combine them together for achieving more power of classification and improving the performance of the recognition systems. The main idea of the study is to combine probabilistic SVM and traditional GMM pattern classification with some characteristic of speech like band-pass energy to achieve better classification rate. This idea has been analytically formulated and tested on a FarsDat based vowel recognition system. The results show inconceivable increases in recognition accuracy. The tests have been carried out by various proposed vowel recognition algorithms and the results have been compared.
In this paper, we study a novel technique that exploits the interaction between speaker traits and linguistic content to improve both speaker verification and utterance verification performance. We implement an idea of speaker-utterance dual attention (SUDA) in a unified neural network. The dual attention refers to an attention mechanism for the two tasks of speaker and utterance verification. The proposed SUDA features an attention mask mechanism to learn the interaction between the speaker and utterance information streams. This helps to focus only on the required information for respective task by masking the irrelevant counterparts. The studies conducted on RSR2015 corpus confirm that the proposed SUDA outperforms the framework without attention mask as well as several competitive systems for both speaker and utterance verification.
A relatively new set of transport-based transforms (CDT, R-CDT, LOT) have shown their strength and great potential in various image and data processing tasks such as parametric signal estimation, classification, cancer detection among many others. It is hence worthwhile to elucidate some of the mathematical properties that explain the successes of these transforms when they are used as tools in data analysis, signal processing or data classification. In particular, we give conditions under which classes of signals that are created by algebraic generative models are transformed into convex sets by the transport transforms. Such convexification of the classes simplify the classification and other data analysis and processing problems when viewed in the transform domain. More specifically, we study the extent and limitation of the convexification ability of these transforms under an algebraic generative modeling framework. We hope that this paper will serve as an introduction to these transforms and will encourage mathematicians and other researchers to further explore the theoretical underpinnings and algorithmic tools that will help understand the successes of these transforms and lay the groundwork for further successful applications.
Glioblastoma is profoundly heterogeneous in regional microstructure and vasculature. Characterizing the spatial heterogeneity of glioblastoma could lead to more precise treatment. With unsupervised learning techniques, glioblastoma MRI-derived radiomic features have been widely utilized for tumor sub-region segmentation and survival prediction. However, the reliability of algorithm outcomes is often challenged by both ambiguous intermediate process and instability introduced by the randomness of clustering algorithms, especially for data from heterogeneous patients. In this paper, we propose an adaptive unsupervised learning approach for efficient MRI intra-tumor partitioning and glioblastoma survival prediction. A novel and problem-specific Feature-enhanced Auto-Encoder (FAE) is developed to enhance the representation of pairwise clinical modalities and therefore improve clustering stability of unsupervised learning algorithms such as K-means. Moreover, the entire process is modelled by the Bayesian optimization (BO) technique with a custom loss function that the hyper-parameters can be adaptively optimized in a reasonably few steps. The results demonstrate that the proposed approach can produce robust and clinically relevant MRI sub-regions and statistically significant survival predictions.
Electroencephalography (EEG) is a complex signal and can require several years of training to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question. In this work, we review 156 papers that apply DL to EEG, published between January 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain-computer interfacing, and cognitive and affective monitoring. We extract trends and highlight interesting approaches in order to inform future research and formulate recommendations. Various data items were extracted for each study pertaining to 1) the data, 2) the preprocessing methodology, 3) the DL design choices, 4) the results, and 5) the reproducibility of the experiments. Our analysis reveals that the amount of EEG data used across studies varies from less than ten minutes to thousands of hours. As for the model, 40% of the studies used convolutional neural networks (CNNs), while 14% used recurrent neural networks (RNNs), most often with a total of 3 to 10 layers. Moreover, almost one-half of the studies trained their models on raw or preprocessed EEG time series. Finally, the median gain in accuracy of DL approaches over traditional baselines was 5.4% across all relevant studies. More importantly, however, we noticed studies often suffer from poor reproducibility: a majority of papers would be hard or impossible to reproduce given the unavailability of their data and code. To help the field progress, we provide a list of recommendations for future studies and we make our summary table of DL and EEG papers available and invite the community to contribute.