Do you want to publish a course? Click here

Optical trapping of nanoparticles in superfluid helium

254   0   0.0 ( 0 )
 Added by Yosuke Minowa
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical tweezers, the three-dimensional confinement of a nanoparticle by a strongly focused beam of light, have been widely employed in investigating biomaterial nanomechanics, nanoscopic fluid properties, and ultrasensitive detections in various environments such as inside living cells, at gigapascal pressure, and under high vacuum. However, the cryogenic operation of solid-state-particle optical tweezers is poorly understood. In this study, we demonstrate the optical trapping of metallic and dielectric nanoparticles in superfluid helium below 2 K, which is two orders of magnitude lower than in the previous experiments. We prepare the nanoparticles via in-situ laser ablation. The nanoparticles are stably trapped with a single laser beam tightly focused in the superfluid helium. Our method provides a new approach for studying nanoscopic quantum hydrodynamic effects and interactions between quantum fluids and classical objects.



rate research

Read More

Superfluidity is an emergent quantum phenomenon which arises due to strong interactions between elementary excitations in liquid helium. These excitations have been probed with great success using techniques such as neutron and light scattering. However measurements to-date have been limited, quite generally, to average properties of bulk superfluid or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of superfluid excitations in real-time. Furthermore, strong light-matter interactions allow both laser cooling and amplification of the thermal motion. This provides a new tool to understand and control the microscopic behaviour of superfluids, including phonon-phonon interactions, quantised vortices and two-dimensional quantum phenomena such as the Berezinskii-Kosterlitz-Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including femtogram effective masses, high mechanical quality factors, strong phonon-phonon and phonon-vortex interactions, and self-assembly into complex geometries with sub-nanometre feature size.
ZnO microspheres fabricated via laser ablation in superfluid helium were found to have bubble-like voids. Even a microsphere demonstrating clear whispering gallery mode resonances in the luminescence had voids. Our analysis confirmed that the voids are located away from the surface and have negligible or little effect on the whispering gallery mode resonances since the electromagnetic energy localizes near the surface of these microspheres. The existence of the voids indicates that helium gas or any evaporated target material was present within the molten microparticles during the microsphere formation.
Critical Casimir forces emerge between objects, such as colloidal particles, whenever their surfaces spatially confine the fluctuations of the order parameter of a critical liquid used as a solvent. These forces act at short but microscopically large distances between these objects, reaching often hundreds of nanometers. Keeping colloids at such distances is a major experimental challenge, which can be addressed by the means of optical tweezers. Here, we review how optical tweezers have been successfully used to quantitatively study critical Casimir forces acting on particles in suspensions. As we will see, the use of optical tweezers to experimentally study critical Casimir forces can play a crucial role in developing nano-technologies, representing an innovative way to realize self-assembled devices at the nano- and microscale.
Optical dipole-traps are used in various scientific fields, including classical optics, quantum optics and biophysics. Here, we propose and implement a dipole-trap for nanoparticles that is based on focusing from the full solid angle with a deep parabolic mirror. The key aspect is the generation of a linear-dipole mode which is predicted to provide a tight trapping potential. We demonstrate the trapping of rod-shaped nanoparticles and validate the trapping frequencies to be on the order of the expected ones. The described realization of an optical trap is applicable for various other kinds of solid-state targets. The obtained results demonstrate the feasibility of optical dipole-traps which simultaneously provide high trap stiffness and allow for efficient interaction of light and matter in free space.
All light has structure, but only recently it has become possible to construct highly controllable and precise potentials so that most laboratories can harness light for their specific applications. In this chapter, we review the emerging techniques for high-resolution and configurable optical trapping of ultracold atoms. We focus on optical deflectors and spatial light modulators in the Fourier and direct imaging configurations. These optical techniques have enabled significant progress in studies of superfluid dynamics, single-atom trapping, and underlie the emerging field of atomtronics. The chapter is intended as a complete guide to the experimentalist for understanding, selecting, and implementing the most appropriate optical trapping technology for a given application. After introducing the basic theory of optical trapping and image formation, we describe each of the above technologies in detail, providing a guide to the fundamental operation of optical deflectors, digital micromirror devices, and liquid crystal spatial light modulators. We also describe the capabilities of these technologies for manipulation of trapped ultracold atoms, where the potential is dynamically modified to enable experiments, and where time-averaged potentials can realise more complex traps. The key considerations when implementing time-averaged traps are described.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا