Do you want to publish a course? Click here

The left heart and exact hull of an additive regular category

77   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Quasi-abelian categories are abundant in functional analysis and representation theory. It is known that a quasi-abelian category $mathcal{E}$ is a cotilting torsionfree class of an abelian category. In fact, this property characterizes quasi-abelian categories. This ambient abelian category is derived equivalent to the category $mathcal{E}$, and can be constructed as the heart $mathcal{LH}(mathcal{E})$ of a $operatorname{t}$-structure on the bounded derived category $operatorname{D^b}(mathcal{E})$ or as the localization of the category of monomorphisms in $mathcal{E}.$ However, there are natural examples of categories in functional analysis which are not quasi-abelian, but merely one-sided quasi-abelian or even weaker. Examples are the category of $operatorname{LB}$-spaces or the category of complete Hausdorff locally convex spaces. In this paper, we consider additive regular categories as a generalization of quasi-abelian categories that covers the aforementioned examples. These categories can be characterized as pre-torsionfree subcategories of abelian categories. As for quasi-abelian categories, we show that such an ambient abelian category of an additive regular category $mathcal{E}$ can be found as the heart of a $operatorname{t}$-structure on the bounded derived category $operatorname{D^b}(mathcal{E})$, or as the localization of the category of monomorphisms of $mathcal{E}$. In our proof of this last construction, we formulate and prove a version of Auslanders formula for additive regular categories. Whereas a quasi-abelian category is an exact category in a natural way, an additive regular category has a natural one-sided exact structure. Such a one-sided exact category can be 2-universally embedded into its exact hull. We show that the exact hull of an additive regular category is again an additive regular category.



rate research

Read More

271 - Wieslaw Kubis 2013
We develop category-theoretic framework for universal homogeneous objects, with some applications in the theory of Banach spaces, linear orderings, and in topology of compact spaces.
Starting with a k-linear or DG category admitting a (homotopy) Serre functor, we construct a k-linear or DG 2-category categorifying the Heisenberg algebra of the numerical K-group of the original category. We also define a 2-categorical analogue of the Fock space representation of the Heisenberg algebra. Our construction generalises and unifies various categorical Heisenberg algebra actions appearing in the literature. In particular, we give a full categorical enhancement of the action on derived categories of symmetric quotient stacks introduced by Krug, which itself categorifies a Heisenberg algebra action proposed by Grojnowski.
168 - Christian Frank 2021
We show that the comma category $(mathcal{F}downarrowmathbf{Grp})$ of groups under the free group functor $mathcal{F}: mathbf{Set} to mathbf{Grp}$ contains the category $mathbf{Gph}$ of simple graphs as a full coreflective subcategory. More broadly, we generalize the embedding of topological spaces into Steven Vickers category of topological systems to a simple technique for embedding certain categories into comma categories, then show as a straightforward application that simple graphs are coreflective in $(mathcal{F}downarrowmathbf{Grp})$.
73 - Tomas Crhak 2018
In The factorization of the Giry monad (arXiv:1707.00488v2) the author asserts that the category of convex spaces is equivalent to the category of Eilenberg-Moore algebras over the Giry monad. Some of the statements employed in the proof of this claim have been refuted in our earlier paper (arXiv:1803.07956). Building on the results of that paper we prove that no such equivalence exists and a parallel statement is proved for the category of super convex spaces.
We study track categories (i.e., groupoid-enriched categories) endowed with additive structure similar to that of a 1-truncated DG-category, except that composition is not assumed right linear. We show that if such a track category is right linear up to suitably coherent correction tracks, then it is weakly equivalent to a 1-truncated DG-category. This generalizes work of the first author on the strictification of secondary cohomology operations. As an application, we show that the secondary integral Steenrod algebra is strictifiable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا