No Arabic abstract
Pixelation occurs in many imaging systems and limits the spatial resolution of the acquired images. This effect is notably present in quantum imaging experiments with photon pairs, in which the number of pixels used to detect coincidences is often limited by the sensor technology or the acquisition speed. Here, we introduce a pixel super-resolution technique based on measuring the full spatially-resolved joint probability distribution (JPD) of spatially-entangled photon pairs. Without shifting optical elements or using prior information, our technique doubles the pixel resolution of the imaging system and enables retrieval of spatial information lost due to undersampling. We demonstrate its use in various quantum imaging protocols, including quantum illumination, entanglement-enabled quantum holography, and in a full-field version of N00N-state quantum holography. Our JPD super-resolution technique will benefit any full-field imaging system limited by the sensor spatial resolution, including all already established and future photon-pairs-based quantum imaging schemes, bringing these techniques closer to real-world applications.
Light shaping facilitates the preparation and detection of optical states and underlies many applications in communications, computing, and imaging. In this Letter, we generalize light shaping to the quantum domain. We show that patterns of phase modulation for classical laser light can also shape higher orders of spatial coherence, allowing deterministic tailoring of high-dimensional quantum entanglement. By modulating spatially entangled photon pairs, we create periodic, topological, and random patterns of quantum illumination, without effect on intensity. We then structure the quantum illumination to simultaneously compensate for entanglement that has been randomized by a scattering medium and to characterize the mediums properties via a quantum measurement of the optical memory effect. The results demonstrate fundamental aspects of spatial coherence and open the field of adaptive quantum optics.
The authors demonstrate a form of two-photon-counting interferometry by measuring the coincidence counts between single-photon-counting detectors at an output port of a Mach-Zehnder Interferometer (MZI) following injection of broad-band time-frequency-entangled photon pairs (EPP) generated from collinear spontaneous parametric down conversion into a single input port. Spectroscopy and refractometry are performed on a sample inserted in one internal path of the MZI by scanning the other path in length, which acquires phase and amplitude information about the samples linear response. Phase modulation and lock-in detection are introduced to increase detection signal-to-noise ratio and implement a down-sampling technique for scanning the interferometer delay, which reduces the sampling requirements needed to reproduce fully the temporal interference pattern. The phase-modulation technique also allows the contributions of various quantum-state pathways leading to the final detection outcomes to be extracted individually. Feynman diagrams frequently used in the context of molecular spectroscopy are used to describe the interferences resulting from the coherence properties of time-frequency EPPs passing through the MZI. These results are an important step toward implementation of a proposed method for molecular spectroscopy, i.e. quantum-light-enhanced two-dimensional spectroscopy.
Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization entangled pairs from parametric down conversion and mapping one photon of each pair onto a rare-earth-ion doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witness, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method useful for the characterisation of multiplexed quantum memories.
The realisation of a triggered entangled photon source will be of great importance in quantum information, including for quantum key distribution and quantum computation. We show here that: 1) the source reported in ``A semiconductor source of triggered entangled photon pairs[1. Stevenson et al., Nature 439, 179 (2006)]} is not entangled; 2) the entanglement indicators used in Ref. 1 are inappropriate, relying on assumptions invalidated by their own data; and 3) even after simulating subtraction of the significant quantity of background noise, their source has insignificant entanglement.
This work aims at designing a lightweight convolutional neural network for image super resolution (SR). With simplicity bare in mind, we construct a pretty concise and effective network with a newly proposed pixel attention scheme. Pixel attention (PA) is similar as channel attention and spatial attention in formulation. The difference is that PA produces 3D attention maps instead of a 1D attention vector or a 2D map. This attention scheme introduces fewer additional parameters but generates better SR results. On the basis of PA, we propose two building blocks for the main branch and the reconstruction branch, respectively. The first one - SC-PA block has the same structure as the Self-Calibrated convolution but with our PA layer. This block is much more efficient than conventional residual/dense blocks, for its twobranch architecture and attention scheme. While the second one - UPA block combines the nearest-neighbor upsampling, convolution and PA layers. It improves the final reconstruction quality with little parameter cost. Our final model- PAN could achieve similar performance as the lightweight networks - SRResNet and CARN, but with only 272K parameters (17.92% of SRResNet and 17.09% of CARN). The effectiveness of each proposed component is also validated by ablation study. The code is available at https://github.com/zhaohengyuan1/PAN.