No Arabic abstract
In this article, we first study, in the framework of operator theory, Pusz and Woronowiczs functional calculus for pairs of bounded positive operators on Hilbert spaces associated with a homogeneous two-variable function on $[0,infty)^2$. Our construction has special features that functions on $[0,infty)^2$ are assumed only locally bounded from below and that the functional calculus is allowed to take extended semibounded self-adjoint operators. To analyze convexity properties of the functional calculus, we extend the notion of operator convexity for real functions to that for functions with values in $(-infty,infty]$. Based on the first part, we generalize the concept of operator convex perspectives to pairs of (not necessarily invertible) bounded positive operators associated with any operator convex function on $(0,infty)$. We then develop theory of such operator convex perspectives, regarded as an operator convex counterpart of Kubo and Andos theory of operator means. Among other results, integral expressions and axiomatization are discussed for our operator perspectives.
We improve the existing Ando-Hiai inequalities for operator means and present new ones for operator perspectives in several ways. We also provide the operator perspective version of the Lie-Trotter formula and consider the extension problem of operator perspectives to non-invertible positive operators.
This paper concerns three classes of real-valued functions on intervals, operator monotone functions, operator convex functions, and strongly operator convex functions. Strongly operator convex functions were previously treated in [3] and [4], where operator algebraic semicontinuity theory or operator theory were substantially used. In this paper we provide an alternate treatment that uses only operator inequalities (or even just matrix inequalities). We also show that if t_0 is a point in the domain of a continuous function f, then f is operator monotone if and only if (f(t) - f(t_0))/(t - t_0) is strongly operator convex. Using this and previously known results, we provide some methods for constructing new functions in one of the three classes from old ones. We also include some discussion of completely monotone functions in this context and some results on the operator convexity or strong operator convexity of phi circ f when f is operator convex or strongly operator convex.
Recently the behavior of operator monotone functions on unbounded intervals with respect to the relation of strictly positivity has been investigated. In this paper we deeply study such behavior not only for operator monotone functions but also for operator convex functions on bounded intervals. More precisely, we prove that if $f$ is a nonlinear operator convex function on a bounded interval $(a,b)$ and $A, B$ are bounded linear operators acting on a Hilbert space with spectra in $(a,b)$ and $A-B$ is invertible, then $sf(A)+(1-s)f(B)>f(sA+(1-s)B)$. A short proof for a similar known result concerning a nonconstant operator monotone function on $[0,infty)$ is presented. Another purpose is to find a lower bound for $f(A)-f(B)$, where $f$ is a nonconstant operator monotone function, by using a key lemma. We also give an estimation of the Furuta inequality, which is an excellent extension of the Lowner--Heinz inequality.
In an earlier paper (A. N. Kochubei, {it Pacif. J. Math.} 269 (2014), 355--369), the author considered a restriction of Vladimirovs fractional differentiation operator $D^alpha$, $alpha >0$, to radial functions on a non-Archimedean field. In particular, it was found to possess such a right inverse $I^alpha$ that the appropriate change of variables reduces equations with $D^alpha$ (for radial functions) to integral equations whose properties resemble those of classical Volterra equations. In other words, we found, in the framework of non-Archimedean pseudo-differential operators, a counterpart of ordinary differential equations. In the present paper, we begin an operator-theoretic investigation of the operator $I^alpha$, and study a related analog of the Laplace transform.
Since 2006 the theory of slice hyperholomorphic functions and the related spectral theory on the S-spectrum have had a very fast development. This new spectral theory based on the S-spectrum has applications for example in the formulation of quaternionic quantum mechanics, in Schur analysis and in fractional diffusion problems. The notion of poly slice analytic function has been recently introduced for the quaternionic setting. In this paper we study the theory of poly slice monogenic functions and the associated functional calculus, called PS-functional calculus, which is the polyanalytic version of the S-functional calculus. Also for this poly monogenic functional calculus we use the notion of S-spectrum.