No Arabic abstract
Large collections of coupled, heterogeneous agents can manifest complex dynamical behavior presenting difficulties for simulation and analysis. However, if the collective dynamics lie on a low-dimensional manifold then the original agent-based model may be approximated with a simplified surrogate model on and near the low-dimensional space where the dynamics live. This is typically accomplished by deriving coarse variables that summarize the collective dynamics, these may take the form of either a collection of scalars or continuous fields (e.g. densities), which are then used as part of a reduced model. Analytically identifying such simplified models is challenging and has traditionally been accomplished through the use of mean-field reductions or an Ott-Antonsen ansatz, but is often impossible. Here we present a data-driven coarse-graining methodology for discovering such reduced models. We consider two types of reduced models: globally-based models which use global information and predict dynamics using information from the whole ensemble, and locally-based models that use local information, that is, information from just a subset of agents close (close in heterogeneity space, not physical space) to an agent, to predict the dynamics of an agent. For both approaches we are able to learn laws governing the behavior of the reduced system on the low-dimensional manifold directly from time series of states from the agent-based system. A nontrivial conclusion is that the dynamics can be equally well reproduced by an all-to-all coupled as well as by a locally coupled model of the same agents.
We suggest kinetic models of dissipation for an ensemble of interacting oriented particles, for example, moving magnetized particles. This is achieved by introducing a double bracket dissipation in kinetic equations using an oriented Poisson bracket, and employing the moment method to derive continuum equations for magnetization and density evolution. We show how our continuum equations generalize the Debye-Hueckel equations for attracting round particles, and Landau-Lifshitz-Gilbert equations for spin waves in magnetized media. We also show formation of singular solutions that are clumps of aligned particles (orientons) starting from random initial conditions. Finally, we extend our theory to the dissipative motion of self-interacting curves.
We report the emergence of stable amplitude chimeras and chimera death in a two-layer network where one layer has an ensemble of identical nonlinear oscillators interacting directly through local coupling and indirectly through dynamic agents that form the second layer. The nonlocality in the interaction among the dynamical agents in the second layer induces different types of chimera related dynamical states in the first layer. The amplitude chimeras developed in them are found to be extremely stable, while chimera death states are prevalent for increased coupling strengths. The results presented are for a system of coupled Stuart-Landau oscillators and can in general represent systems with short-range interactions coupled to another set of systems with long range interactions. In this case, by tuning the range of interactions among the oscillators or the coupling strength between the two types of systems, we can control the nature of chimera states and the system can be restored to homogeneous steady states. The dynamic agents interacting nonlocally with long-range interactions can be considered as a dynamic environment or medium interacting with the system. We indicate how the second layer can act as a reinforcement mechanism on the first layer under various possible interactions for desirable effects.
We introduce a stochastic heterogeneous interacting-agent model for the short-time non-equilibrium evolution of excess demand and price in a stylized asset market. We consider a combination of social interaction within peer groups and individually heterogeneous fundamentalist trading decisions which take into account the market price and the perceived fundamental value of the asset. The resulting excess demand is coupled to the market price. Rigorous analysis reveals that this feedback may lead to price oscillations, a single bounce, or monotonic price behaviour. The model is a rare example of an analytically tractable interacting-agent model which allows us to deduce in detail the origin of these different collective patterns. For a natural choice of initial distribution the results are independent of the graph structure that models the peer network of agents whose decisions influence each other.
A physical system exposes to us in a real space, while its description often refers to its reciprocal momentum space. A connection between them can be established by exploring patterns of quasiparticles interference (QPI), which is experimentally accessible by Fourier transformation of the scanning tunneling spectroscopy (FT-STS). We here investigate how local and global features of QPI patterns are related to the geometry and topology of electronic structure in the considered physical system. A reduced response function (RRF) approach is developed that can analyze QPI patterns with clear physical pictures. It is justified that the generalized joint density of states, which is the imaginary part of RRF, for studying QPI. Moreover, we reveal that global patterns of QPI may be indicators of topological numbers for gapless systems, and demonstrate that robustness of such indicators against distractive local features of QPI for topological materials with complicated band structures.
Let F be a function field in one variable over a p-adic field and D a central division algebra over F of degree n coprime to p. We prove that Suslin invariant detects whether an element in F is a reduced norm. This leads to a local-global principle for reduced norms with respect to all discrete valuations of F.