Do you want to publish a course? Click here

TKS X: Confirmation of TOI-1444b and a Comparative Analysis of the Ultra-short-period Planets with Hot Neptunes

84   0   0.0 ( 0 )
 Added by Fei Dai
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of TOI-1444b, a 1.4-$R_oplus$ super-Earth on a 0.47-day orbit around a Sun-like star discovered by {it TESS}. Precise radial velocities from Keck/HIRES confirmed the planet and constrained the mass to be $3.87 pm 0.71 M_oplus$. The RV dataset also indicates a possible non-transiting, 16-day planet ($11.8pm2.9M_oplus$). We report a tentative detection of phase curve variation and secondary eclipse of TOI-1444b in the {it TESS} bandpass. TOI-1444b joins the growing sample of 17 ultra-short-period planets with well-measured masses and sizes, most of which are compatible with an Earth-like composition. We take this opportunity to examine the expanding sample of ultra-short-period planets ($<2R_oplus$) and contrast them with the newly discovered sub-day ultra-hot Neptunes ($>3R_oplus$, $>2000F_oplus$ TOI-849 b, LTT9779 b and K2-100). We find that 1) USPs have predominately Earth-like compositions with inferred iron core mass fractions of 0.32$pm$0.04; and have masses below the threshold of runaway accretion ($sim 10M_oplus$), while ultra-hot Neptunes are above the threshold and have H/He or other volatile envelope. 2) USPs are almost always found in multi-planet system consistent with a secular interaction formation scenario; ultra-hot Neptunes ($P_{rm orb} lesssim$1 day) tend to be ``lonely similar to longer-period hot Neptunes($P_{rm orb}$1-10 days) and hot Jupiters. 3) USPs occur around solar-metallicity stars while hot Neptunes prefer higher metallicity hosts. 4) In all these respects, the ultra-hot Neptunes show more resemblance to hot Jupiters than the smaller USP planets, although ultra-hot Neptunes are rarer than both USP and hot Jupiters by 1-2 orders of magnitude.

rate research

Read More

We present the discovery and characterization of two sub-Neptunes in close orbits, as well as a tentative outer planet of a similar size, orbiting TOI-1260 - a low metallicity K6V dwarf star. Photometry from TESS yields radii of $R_{rm b} = 2.33 pm 0.10$ $R_{oplus}$ and $R_{rm c} = 2.82 pm 0.15$ $R_{oplus}$, and periods of 3.13 and 7.49 days for TOI-1260b and TOI-1260c, respectively. We combined the TESS data with a series of ground-based follow-up observations to characterize the planetary system. From HARPS-N high-precision radial velocities we obtain $M_{rm b} = 8.61_{ - 1.46 } ^ { + 1.36 }$ $M_{oplus}$ and $M_{rm c} = 11.84_{ - 3.23 } ^ { + 3.38 }$ $M_{oplus}$. The star is moderately active with a complex activity pattern, which necessitated the use of Gaussian process regression for both the light curve detrending and the radial velocity modelling, in the latter case guided by suitable activity indicators. We successfully disentangle the stellar-induced signal from the planetary signals, underlining the importance and usefulness of the Gaussian Process approach. We test the systems stability against atmospheric photoevaporation and find that the TOI-1260 planets are classic examples of the structure and composition ambiguity typical for the $2-3$ $R_{oplus}$ range.
Based on HARPS-N radial velocities (RVs) and TESS photometry, we present a full characterisation of the planetary system orbiting the late G dwarf TOI-561. After the identification of three transiting candidates by TESS, we discovered two additional external planets from RV analysis. RVs cannot confirm the outer TESS transiting candidate, which would also make the system dynamically unstable. We demonstrate that the two transits initially associated with this candidate are instead due to single transits of the two planets discovered using RVs. The four planets orbiting TOI-561 include an ultra-short period (USP) super-Earth (TOI-561 b) with period $P_{rm b} = 0.45$ d, mass $M_{rm b} =1.59 pm 0.36$ M$_oplus$ and radius $R_{rm b}=1.42 pm 0.07$ R$_oplus$, and three mini-Neptunes: TOI-561 c, with $P_{rm c} = 10.78$ d, $M_{rm c} = 5.40 pm 0.98$ M$_oplus$, $R_{rm c}= 2.88 pm 0.09$ R$_oplus$; TOI-561 d, with $P_{rm d} = 25.6$ d, $M_{rm d} = 11.9 pm 1.3$ M$_oplus$, $R_{rm d} = 2.53 pm 0.13$ R$_oplus$; and TOI-561 e, with $P_{rm e} = 77.2$ d, $M_{rm e} = 16.0 pm 2.3$ M$_oplus$, $R_{rm e} = 2.67 pm 0.11$ R$_oplus$. Having a density of $3.0 pm 0.8$ g cm$^{-3}$, TOI-561 b is the lowest density USP planet known to date. Our N-body simulations confirm the stability of the system and predict a strong, anti-correlated, long-term transit time variation signal between planets d and e. The unusual density of the inner super-Earth and the dynamical interactions between the outer planets make TOI-561 an interesting follow-up target.
Dynamical histories of planetary systems, as well as atmospheric evolution of highly irradiated planets, can be studied by characterizing the ultra-short-period planet population, which the TESS mission is particularly well suited to discover. Here, we report on the follow-up of a transit signal detected in the TESS sector 19 photometric time series of the M3.0 V star TOI-1685 (2MASS J04342248+4302148). We confirm the planetary nature of the transit signal, which has a period of P_b=0.6691403+0.0000023-0.0000021 d, using precise radial velocity measurements taken with the CARMENES spectrograph. From the joint photometry and radial velocity analysis, we estimate the following parameters for TOI-1685 b: a mass of M_b=3.78+/-0.63 M_Earth, a radius of R_b=1.70+/-0.07 R_Earth, which together result in a bulk density of rho_b=4.21+0.95-0.82 g/cm3, and an equilibrium temperature of Teq_b=1069+/-16 K. TOI-1685 b is the least dense ultra-short period planet around an M dwarf known to date. TOI-1685 b is also one of the hottest transiting Earth-size planets with accurate dynamical mass measurements, which makes it a particularly attractive target for thermal emission spectroscopy. Additionally, we report a further non-transiting planet candidate in the system, TOI-1685[c], with an orbital period of P_[c]=9.02+0.10-0.12 d.
We report the measurement of a spectroscopic transit of TOI-1726 c, one of two planets transiting a G-type star with $V$ = 6.9 in the Ursa Major Moving Group ($sim$400 Myr). With a precise age constraint from cluster membership, TOI-1726 provides a great opportunity to test various obliquity excitation scenarios that operate on different timescales. By modeling the Rossiter-McLaughlin (RM) effect, we derived a sky-projected obliquity of $-1^{+35}_{-32}~^{circ}$. This result rules out a polar/retrograde orbit; and is consistent with an aligned orbit for planet c. Considering the previously reported, similarly prograde RM measurement of planet b and the transiting nature of both planets, TOI-1726 tentatively conforms to the overall picture that compact multi-transiting planetary systems tend to have coplanar, likely aligned orbits. TOI-1726 is also a great atmospheric target for understanding differential atmospheric loss of sub-Neptune planets (planet b 2.2 $R_oplus$ and c 2.7 $R_oplus$ both likely underwent photoevaporation). The coplanar geometry points to a dynamically cold history of the system that simplifies any future modeling of atmospheric escape.
113 - Yubo Su , Dong Lai 2021
We present a comprehensive theoretical study on the spin evolution of a planet under the combined effects of tidal dissipation and gravitational perturbation from an external companion. Such a spin + companion system (called Colombos top) appears in many [exo]planetary contexts. The competition between the tidal torque (which drives spin-orbit alignment and synchronization) and the gravitational torque from the companion (which drives orbital precession of the planet) gives rise to two possible spin equilibria (Tidal Cassini Equilibria, tCE) that are stable and attracting: the simple tCE1, which typically has a low spin obliquity, and the resonant tCE2, which can have a significant obliquity. The latter arises from a spin-orbit resonance and can be broken when the tidal alignment torque is stronger than the precessional torque from the companion. We characterize the long-term evolution of the planetary spin (both magnitude and obliquity) for an arbitrary initial spin orientation, and develop a new theoretical method to analytically obtain the probability of resonance capture driven by tidal dissipation. Applying our general theoretical results to exoplanetary systems, we find that a super-Earth (SE) with an exterior companion can have a substantial probability of being trapped in the high-obliquity tCE2, assuming that SEs have a wide range of primordial obliquities. We also evaluate the recently proposed obliquity tide scenarios for the formation of ultra-short-period Earth-mass planets and for the orbital decay of hot Jupiter WASP-12b. We find in both cases that the probability of resonant capture into tCE2 is generally low and that such a high-obliquity state can be easily broken by the required orbital decay.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا