Do you want to publish a course? Click here

An ultra-short-period transiting super-Earth orbiting the M3 dwarf TOI-1685

210   0   0.0 ( 0 )
 Added by Paz Bluhm P.Bluhm
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dynamical histories of planetary systems, as well as atmospheric evolution of highly irradiated planets, can be studied by characterizing the ultra-short-period planet population, which the TESS mission is particularly well suited to discover. Here, we report on the follow-up of a transit signal detected in the TESS sector 19 photometric time series of the M3.0 V star TOI-1685 (2MASS J04342248+4302148). We confirm the planetary nature of the transit signal, which has a period of P_b=0.6691403+0.0000023-0.0000021 d, using precise radial velocity measurements taken with the CARMENES spectrograph. From the joint photometry and radial velocity analysis, we estimate the following parameters for TOI-1685 b: a mass of M_b=3.78+/-0.63 M_Earth, a radius of R_b=1.70+/-0.07 R_Earth, which together result in a bulk density of rho_b=4.21+0.95-0.82 g/cm3, and an equilibrium temperature of Teq_b=1069+/-16 K. TOI-1685 b is the least dense ultra-short period planet around an M dwarf known to date. TOI-1685 b is also one of the hottest transiting Earth-size planets with accurate dynamical mass measurements, which makes it a particularly attractive target for thermal emission spectroscopy. Additionally, we report a further non-transiting planet candidate in the system, TOI-1685[c], with an orbital period of P_[c]=9.02+0.10-0.12 d.



rate research

Read More

We report the discovery and characterisation of a super-Earth and a sub-Neptune transiting the bright ($K=8.8$), quiet, and nearby (37 pc) M3V dwarf TOI-1266. We validate the planetary nature of TOI-1266 b and c using four sectors of TESS photometry and data from the newly-commissioned 1-m SAINT-EX telescope located in San Pedro Martir (Mexico). We also include additional ground-based follow-up photometry as well as high-resolution spectroscopy and high-angular imaging observations. The inner, larger planet has a radius of $R=2.37_{-0.12}^{+0.16}$ R$_{oplus}$ and an orbital period of 10.9 days. The outer, smaller planet has a radius of $R=1.56_{-0.13}^{+0.15}$ R$_{oplus}$ on an 18.8-day orbit. The data are found to be consistent with circular, co-planar and stable orbits that are weakly influenced by the 2:1 mean motion resonance. Our TTV analysis of the combined dataset enables model-independent constraints on the masses and eccentricities of the planets. We find planetary masses of $M_mathrm{p}$ = $13.5_{-9.0}^{+11.0}$ $mathrm{M_{oplus}}$ ($<36.8$ $mathrm{M_{oplus}}$ at 2-$sigma$) for TOI-1266 b and $2.2_{-1.5}^{+2.0}$ $mathrm{M_{oplus}}$ ($<5.7$ $mathrm{M_{oplus}}$ at 2-$sigma$) for TOI-1266 c. We find small but non-zero orbital eccentricities of $0.09_{-0.05}^{+0.06}$ ($<0.21$ at 2-$sigma$) for TOI-1266 b and $0.04pm0.03$ ($<0.10$ at 2-$sigma$) for TOI-1266 c. The equilibrium temperatures of both planets are of $413pm20$ K and $344pm16$ K, respectively, assuming a null Bond albedo and uniform heat redistribution from the day-side to the night-side hemisphere. The host brightness and negligible activity combined with the planetary system architecture and favourable planet-to-star radii ratios makes TOI-1266 an exquisite system for a detailed characterisation.
Ultra-short period (USP) planets are a class of exoplanets with periods shorter than one day. The origin of this sub-population of planets is still unclear, with different formation scenarios highly dependent on the composition of the USP planets. A better understanding of this class of exoplanets will, therefore, require an increase in the sample of such planets that have accurate and precise masses and radii, which also includes estimates of the level of irradiation and information about possible companions. Here we report a detailed characterization of a USP planet around the solar-type star HD 80653 $equiv$ EP 251279430 using the K2 light curve and 108 precise radial velocities obtained with the HARPS-N spectrograph, installed on the Telescopio Nazionale Galileo. From the K2 C16 data, we found one super-Earth planet ($R_{b}=1.613pm0.071 R_{oplus}$) transiting the star on a short-period orbit ($P_{rm b}=0.719573pm0.000021$ d). From our radial velocity measurements, we constrained the mass of HD 80653 b to $M_{b}=5.60pm0.43 M_{oplus}$. We also detected a clear long-term trend in the radial velocity data. We derived the fundamental stellar parameters and determined a radius of $R_{star}=1.22pm0.01 R_{odot}$ and mass of $M_{star}=1.18pm0.04 M_{odot}$, suggesting that HD 80653, has an age of $2.7pm1.2$ Gyr. The bulk density ($rho_{b} = 7.4 pm 1.1$ g cm$^{-3}$) of the planet is consistent with an Earth-like composition of rock and iron with no thick atmosphere. Our analysis of the K2 photometry also suggests hints of a shallow secondary eclipse with a depth of 8.1$pm$3.7 ppm. Flux variations along the orbital phase are consistent with zero. The most important contribution might come from the day-side thermal emission from the surface of the planet at $Tsim3480$ K.
Based on HARPS-N radial velocities (RVs) and TESS photometry, we present a full characterisation of the planetary system orbiting the late G dwarf TOI-561. After the identification of three transiting candidates by TESS, we discovered two additional external planets from RV analysis. RVs cannot confirm the outer TESS transiting candidate, which would also make the system dynamically unstable. We demonstrate that the two transits initially associated with this candidate are instead due to single transits of the two planets discovered using RVs. The four planets orbiting TOI-561 include an ultra-short period (USP) super-Earth (TOI-561 b) with period $P_{rm b} = 0.45$ d, mass $M_{rm b} =1.59 pm 0.36$ M$_oplus$ and radius $R_{rm b}=1.42 pm 0.07$ R$_oplus$, and three mini-Neptunes: TOI-561 c, with $P_{rm c} = 10.78$ d, $M_{rm c} = 5.40 pm 0.98$ M$_oplus$, $R_{rm c}= 2.88 pm 0.09$ R$_oplus$; TOI-561 d, with $P_{rm d} = 25.6$ d, $M_{rm d} = 11.9 pm 1.3$ M$_oplus$, $R_{rm d} = 2.53 pm 0.13$ R$_oplus$; and TOI-561 e, with $P_{rm e} = 77.2$ d, $M_{rm e} = 16.0 pm 2.3$ M$_oplus$, $R_{rm e} = 2.67 pm 0.11$ R$_oplus$. Having a density of $3.0 pm 0.8$ g cm$^{-3}$, TOI-561 b is the lowest density USP planet known to date. Our N-body simulations confirm the stability of the system and predict a strong, anti-correlated, long-term transit time variation signal between planets d and e. The unusual density of the inner super-Earth and the dynamical interactions between the outer planets make TOI-561 an interesting follow-up target.
We report the discovery of a new ultra-short period hot Jupiter from the Next Generation Transit Survey. NGTS-6b orbits its star with a period of 21.17~h, and has a mass and radius of $1.330^{+0.024}_{-0.028}$mjup, and $1.271^{+0.197}_{-0.188}$rjup, respectively, returning a planetary bulk density of 0.711$^{+0.214}_{-0.136}$~g~cm$^{-3}$. Conforming to the currently known small population of ultra-short period hot Jupiters, the planet appears to orbit a metal-rich star ([Fe/H]$=+0.11pm0.09$~dex). Photoevaporation models suggest the planet should have lost 5% of its gaseous atmosphere over the course of the 9.6~Gyrs of evolution of the system. NGTS-6b adds to the small, but growing list of ultra-short period gas giant planets, and will help us to understand the dominant formation and evolutionary mechanisms that govern this population.
Studies of close-in planets orbiting M dwarfs have suggested that the M dwarf radius valley may be well-explained by distinct formation timescales between enveloped terrestrials, and rocky planets that form at late times in a gas-depleted environment. This scenario is at odds with the picture that close-in rocky planets form with a primordial gaseous envelope that is subsequently stripped away by some thermally-driven mass loss process. These two physical scenarios make unique predictions of the rocky/enveloped transitions dependence on orbital separation such that studying the compositions of planets within the M dwarf radius valley may be able to establish the dominant physics. Here, we present the discovery of one such keystone planet: the ultra-short period planet TOI-1634 b ($P=0.989$ days, $F=121 F_{oplus}$, $r_p = 1.790^{+0.080}_{-0.081} R_{oplus}$) orbiting a nearby M2 dwarf ($K_s=8.7$, $R_s=0.45 R_{odot}$, $M_s=0.50 M_{odot}$) and whose size and orbital period sit within the M dwarf radius valley. We confirm the TESS-discovered planet candidate using extensive ground-based follow-up campaigns, including a set of 32 precise radial velocity measurements from HARPS-N. We measure a planetary mass of $4.91^{+0.68}_{-0.70} M_{oplus}$, which makes TOI-1634 b inconsistent with an Earth-like composition at $5.9sigma$ and thus requires either an extended gaseous envelope, a large volatile-rich layer, or a rocky portion that is not dominated by iron and silicates to explain its mass and radius. The discovery that the bulk composition of TOI-1634 b is inconsistent with that of the Earth favors the gas-depleted formation mechanism to explain the emergence of the radius valley around M dwarfs with $M_slesssim 0.5 M_{odot}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا