No Arabic abstract
We investigate the complexity=volume proposal in the case of Janus AdS$_3$ geometries, both at zero and finite temperature. The leading contribution coming from the Janus interface is a logarithmic divergence, whose coefficient is a function of the dilaton excursion. In the presence of the defect, complexity is no longer topological and becomes temperature-dependent. We also study the time evolution of the extremal volume for the time-dependent Janus BTZ black hole. This background is not dual to an interface but to a pair of entangled CFTs with different values of the couplings. At late times, when the equilibrium is restored, the couplings of the CFTs do not influence the complexity rate. On the contrary, the complexity rate for the out-of-equilibrium system is always smaller compared to the pure BTZ black hole background.
We compute holographic complexity for the non-supersymmetric Janus deformation of AdS$_5$ according to the volume conjecture. The result is characterized by a power-law ultraviolet divergence. When a ball-shaped region located around the interface is considered, a sub-leading logarithmic divergent term and a finite part appear in the corresponding subregion volume complexity. Using two different prescriptions to regularize the divergences, we find that the coefficient of the logarithmic term is universal.
We study the Complexity=Volume conjecture for Warped AdS$_3$ black holes. We compute the spatial volume of the Einstein-Rosen bridge and we find that its growth rate is proportional to the Hawking temperature times the Bekenstein-Hawking entropy. This is consistent with expectations about computational complexity in the boundary theory.
We describe an application of the Monte Carlo method to the Janus deformation of the black brane background. We present numerical results for three and five dimensional black Janus geometries with planar and spherical interfaces. In particular, we argue that the 5D geometry with a spherical interface has an application in understanding the finite temperature bag-like QCD model via the AdS/CFT correspondence. The accuracy and convergence of the algorithm are evaluated with respect to the grid spacing. The systematic errors of the method are determined using an exact solution of 3D black Janus. This numerical approach for solving linear problems is unaffected initial guess of a trial solution and can handle an arbitrary geometry under various boundary conditions in the presence of source fields.
We analytically compute subsystem action complexity for a segment in the BTZ black hole background up to the finite term, and we find that it is equal to the sum of a linearly divergent term proportional to the size of the subregion and of a term proportional to the entanglement entropy. This elegant structure does not survive to more complicated geometries: in the case of a two segments subregion in AdS$_3$, complexity has additional finite contributions. We give analytic results for the mutual action complexity of a two segments subregion.
We compute the ultraviolet divergences of holographic subregion complexity for the left and right factors of the thermofield double state in warped AdS$_3$ black holes, both for the action and the volume conjectures. Besides the linear divergences, which are also present in the BTZ black hole, additional logarithmic divergences appear. For the action conjecture, these log divergences are not affected by the arbitrarity in the length scale associated with the counterterm needed to ensure reparameterization invariance. We find that the subregion action complexity obeys the superadditivity property for the thermofield double in warped AdS$_3$, independently from the action counterterm coefficient. We study the temperature dependence of subregion complexity at constant angular momentum and we find that it is correlated with the sign of the specific heat.