We study the Complexity=Volume conjecture for Warped AdS$_3$ black holes. We compute the spatial volume of the Einstein-Rosen bridge and we find that its growth rate is proportional to the Hawking temperature times the Bekenstein-Hawking entropy. This is consistent with expectations about computational complexity in the boundary theory.
The Complexity=Action conjecture is studied for black holes in Warped AdS$_3$ space, realized as solutions of Einstein gravity plus matter. The time dependence of the action of the Wheeler-DeWitt patch is investigated, both for the non-rotating and the rotating case. The asymptotic growth rate is found to be equal to the Hawking temperature times the Bekenstein-Hawking entropy; this is in agreement with a previous calculation done using the Complexity=Volume conjecture.
We provide the metric, the gravitino fields and the gauge fields to all orders in the fermionic zero modes for D=5 and D=4, N=2 gauged supergravity solutions starting from non-extremal AdS--Schwarzschild black holes. We compute the Brown-York stress--energy tensor on the boundary of AdS_5 / AdS_4 spaces and we discuss some implications of the fermionic corrections to perfect fluid interpretation of the boundary theory. The complete non-linear solution, which we denote as fermionic wig, is achieved by acting with supersymmetry transformations upon the supergravity fields and that expansion naturally truncates at some order in the fermionic zero modes.
We investigate whether supertranslation symmetry may appear in a scenario that involves black holes in AdS space. The framework we consider is massive 3D gravity, which admits a rich black hole phase space, including stationary AdS black holes with softly decaying hair. We consider a set of asymptotic conditions that permits such decaying near the boundary, and which, in addition to the local conformal symmetry, is preserved by an extra local current. The corresponding algebra of diffeomorphisms consists of two copies of Virasoro algebra in semi-direct sum with an infinite-dimensional Abelian ideal. We then reorient the analysis to the near horizon region, where infinite-dimensional symmetries also appear. The supertranslation symmetry at the horizon yields an infinite set of non-trivial charges, which we explicitly compute. The zero-mode of these charges correctly reproduces the black hole entropy. In contrast to Einstein gravity, in the higher-derivative theory subleading terms in the near horizon expansion contribute to the near horizon charges. Such terms happen to capture the higher-curvature corrections to the Bekenstein area law.
We investigate the holographic entanglement entropy in the Rindler-AdS space-time to obtain an exact solution for the corresponding minimal surface. Moreover, the holographic entanglement entropy of the charged single accelerated AdS Black holes in four dimensions is investigated. We obtain the volume of the codimension one-time slice in the bulk geometry enclosed by the minimal surface for both the RindlerAdS space-time and the charged accelerated AdS Black holes in the bulk. It is shown that the holographic entanglement entropy and the volume enclosed by the minimal hyper-surface in both the Rindler spacetime and the charged single accelerated AdS Black holes (C-metric) in the bulk decrease with increasing acceleration parameter. Behavior of the entanglement entropy, subregion size and value of the acceleration parameter are investigated. It is shown that for jAj < 0:2 a larger subregion on the boundary is equivalent to less information about the space-time.
We compute the ultraviolet divergences of holographic subregion complexity for the left and right factors of the thermofield double state in warped AdS$_3$ black holes, both for the action and the volume conjectures. Besides the linear divergences, which are also present in the BTZ black hole, additional logarithmic divergences appear. For the action conjecture, these log divergences are not affected by the arbitrarity in the length scale associated with the counterterm needed to ensure reparameterization invariance. We find that the subregion action complexity obeys the superadditivity property for the thermofield double in warped AdS$_3$, independently from the action counterterm coefficient. We study the temperature dependence of subregion complexity at constant angular momentum and we find that it is correlated with the sign of the specific heat.