Do you want to publish a course? Click here

Thermophysical Modeling of 20 Themis Family Asteroids with WISE/NEOWISE Observations

113   0   0.0 ( 0 )
 Added by Jianghui Ji
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Themis family is one of the largest and oldest asteroid populations in the main-belt. Water-ice may widely exist on the parent body (24) Themis. In this work, we employ the Advanced Thermophysical Model as well as mid-infrared measurements from NASAs Wide-Field Infrared Survey Explorer to explore thermal parameters of 20 Themis family members. Here we show that the average thermal inertia and geometric albedo are ~$39.5pm26.0 ~rm J m^{-2} s^{-1/2} K^{-1}$ and $0.067pm0.018$, respectively. The family members have a relatively moderate roughness fraction on their surfaces. We find that the relatively low albedos of Themis members are consistent with the typical values of B-type and C-type asteroids. As aforementioned, Themis family bears a very low thermal inertia, which indicates a fine and mature regolith on their surfaces. The resemblance of thermal inertia and geometric albedo of Themis members may reveal their close connection in origin and evolution. In addition, we present the compared results of thermal parameters for several prominent families.



rate research

Read More

We present revised near-infrared albedo fits of 2835 Main Belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. As our sample requires reflected light measurements, it undersamples small, low albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the Main Belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 um. Conversely, the 4.6 um albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 um albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 um albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are an important indicator of asteroid taxonomy and can identify interesting targets for spectroscopic followup.
We present initial results from the Wide-field Infrared Survey Explorer (WISE), a four-band all-sky thermal infrared survey that produces data well suited to measuring the physical properties of asteroids, and the NEOWISE enhancement to the WISE mission allowing for detailed study of Solar system objects. Using a NEATM thermal model fitting routine we compute diameters for over 100,000 Main Belt asteroids from their IR thermal flux, with errors better than 10%. We then incorporate literature values of visible measurements (in the form of the H absolute magnitude) to determine albedos. Using these data we investigate the albedo and diameter distributions of the Main Belt. As observed previously, we find a change in the average albedo when comparing the inner, middle, and outer portions of the Main Belt. We also confirm that the albedo distribution of each region is strongly bimodal. We observe groupings of objects with similar albedos in regions of the Main Belt associated with dynamical breakup families. Asteroid families typically show a characteristic albedo for all members, but there are notable exceptions to this. This paper is the first look at the Main Belt asteroids in the WISE data, and only represents the preliminary, observed raw size and albedo distributions for the populations considered. These distributions are subject to survey biases inherent to the NEOWISE dataset and cannot yet be interpreted as describing the true populations; the debiased size and albedo distributions will be the subject of the next paper in this series.
136 - T. Grav , A. K. Mainzer , J. Bauer 2011
We present the preliminary analysis of over 1739 known and 349 candidate Jovian Trojans observed by the NEOWISE component of the Wide-field Infrared Survey Explorer (WISE). With this survey the available diameters, albedos and beaming parameters for the Jovian Trojans have been increased by more than an order of magnitude compared to previous surveys. We find that the Jovian Trojan population is very homogenous for sizes larger than $sim10$km (close to the detection limit of WISE for these objects). The observed sample consists almost exclusively of low albedo objects, having a mean albedo value of $0.07pm0.03$. The beaming parameter was also derived for a large fraction of the observed sample, and it is also very homogenous with an observed mean value of $0.88pm0.13$. Preliminary debiasing of the survey shows our observed sample is consistent with the leading cloud containing more objects than the trailing cloud. We estimate the fraction to be N(leading)/N(trailing) $sim 1.4 pm 0.2$, lower than the $1.6 pm 0.1$ value derived by others.
234 - T. Grav , A. K. Mainzer , J. Bauer 2011
We present the preliminary analysis of 1023 known asteroids in the Hilda region of the Solar System observed by the NEOWISE component of the Wide-field Infrared Survey Explorer (WISE). The sizes of the Hildas observed range from $sim 3 - 200$km. We find no size - albedo dependency as reported by other projects. The albedos of our sample are low, with a weighted mean value $p_V = 0.055pm0.018$, for all sizes sampled by the NEOWISE survey. We observed a significant fraction of the objects in the two known collisional families in the Hilda population. It is found that the Hilda collisional family is brighter, with weighted mean albedo of $p_V = 0.061pm0.011$, than the general population and dominated by D-type asteroids, while the Schubart collisional family is darker, with weighted mean albedo of ($p_V = 0.039pm0.013$). Using the reflected sunlight in the two shortest WISE bandpasses we are able to derive a method for taxonomic classification of $sim 10%$ of the Hildas detected in the NEOWISE survey. For the Hildas with diameter larger than 30km there are $67^{+7}_{-15}%$ D-type asteroids and $26^{+17}_{-5}%$ C-/P-type asteroids (with the majority of these being P-types).
Context. It has recently been proposed that the surface composition of icy main-belt asteroids (B-,C-,Cb-,Cg-,P-,and D-types) may be consistent with that of chondritic porous interplanetary dust particles (CPIDPs). Aims. In the light of this new association, we re-examine the surface composition of a sample of asteroids belonging to the Themis family in order to place new constraints on the formation and evolution of its parent body. Methods. We acquired NIR spectral data for 15 members of the Themis family and complemented this dataset with existing spectra in the visible and mid-infrared ranges to perform a thorough analysis of the composition of the family. Assuming end-member minerals and particle sizes (<2mum) similar to those found in CPIDPs, we used a radiative transfer code adapted for light scattering by small particles to model the spectral properties of these asteroids. Results. Our best-matching models indicate that most objects in our sample possess a surface composition that is consistent with the composition of CP IDPs.We find ultra-fine grained Fe-bearing olivine glasses to be among the dominant constituents. We further detect the presence of minor fractions of Mg-rich crystalline silicates. The few unsuccessfully matched asteroids may indicate the presence of interlopers in the family or objects sampling a distinct compositional layer of the parent body. Conclusions. The composition inferred for the Themis family members suggests that the parent body accreted from a mixture of ice and anhydrous silicates (mainly amorphous) and subsequently underwent limited heating. By comparison with existing thermal models that assume a 400km diameter progenitor, the accretion process of the Themis parent body must have occurred relatively late (>4Myr after CAIs) so that only moderate internal heating occurred in its interior, preventing aqueous alteration of the outer shell.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا