Do you want to publish a course? Click here

WISE/NEOWISE Observations of the Jovian Trojans: Preliminary Results

146   0   0.0 ( 0 )
 Added by Tommy Grav
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the preliminary analysis of over 1739 known and 349 candidate Jovian Trojans observed by the NEOWISE component of the Wide-field Infrared Survey Explorer (WISE). With this survey the available diameters, albedos and beaming parameters for the Jovian Trojans have been increased by more than an order of magnitude compared to previous surveys. We find that the Jovian Trojan population is very homogenous for sizes larger than $sim10$km (close to the detection limit of WISE for these objects). The observed sample consists almost exclusively of low albedo objects, having a mean albedo value of $0.07pm0.03$. The beaming parameter was also derived for a large fraction of the observed sample, and it is also very homogenous with an observed mean value of $0.88pm0.13$. Preliminary debiasing of the survey shows our observed sample is consistent with the leading cloud containing more objects than the trailing cloud. We estimate the fraction to be N(leading)/N(trailing) $sim 1.4 pm 0.2$, lower than the $1.6 pm 0.1$ value derived by others.



rate research

Read More

245 - T. Grav , A. K. Mainzer , J. Bauer 2011
We present the preliminary analysis of 1023 known asteroids in the Hilda region of the Solar System observed by the NEOWISE component of the Wide-field Infrared Survey Explorer (WISE). The sizes of the Hildas observed range from $sim 3 - 200$km. We find no size - albedo dependency as reported by other projects. The albedos of our sample are low, with a weighted mean value $p_V = 0.055pm0.018$, for all sizes sampled by the NEOWISE survey. We observed a significant fraction of the objects in the two known collisional families in the Hilda population. It is found that the Hilda collisional family is brighter, with weighted mean albedo of $p_V = 0.061pm0.011$, than the general population and dominated by D-type asteroids, while the Schubart collisional family is darker, with weighted mean albedo of ($p_V = 0.039pm0.013$). Using the reflected sunlight in the two shortest WISE bandpasses we are able to derive a method for taxonomic classification of $sim 10%$ of the Hildas detected in the NEOWISE survey. For the Hildas with diameter larger than 30km there are $67^{+7}_{-15}%$ D-type asteroids and $26^{+17}_{-5}%$ C-/P-type asteroids (with the majority of these being P-types).
313 - A. Mainzer , T. Grav , J. Bauer 2011
With the NEOWISE portion of the emph{Wide-field Infrared Survey Explorer} (WISE) project, we have carried out a highly uniform survey of the near-Earth object (NEO) population at thermal infrared wavelengths ranging from 3 to 22 $mu$m, allowing us to refine estimates of their numbers, sizes, and albedos. The NEOWISE survey detected NEOs the same way whether they were previously known or not, subject to the availability of ground-based follow-up observations, resulting in the discovery of more than 130 new NEOs. The surveys uniformity in sensitivity, observing cadence, and image quality have permitted extrapolation of the 428 near-Earth asteroids (NEAs) detected by NEOWISE during the fully cryogenic portion of the WISE mission to the larger population. We find that there are 981$pm$19 NEAs larger than 1 km and 20,500$pm$3000 NEAs larger than 100 m. We show that the Spaceguard goal of detecting 90% of all 1 km NEAs has been met, and that the cumulative size distribution is best represented by a broken power law with a slope of 1.32$pm$0.14 below 1.5 km. This power law slope produces $sim13,200pm$1,900 NEAs with $D>$140 m. Although previous studies predict another break in the cumulative size distribution below $Dsim$50-100 m, resulting in an increase in the number of NEOs in this size range and smaller, we did not detect enough objects to comment on this increase. The overall number for the NEA population between 100-1000 m are lower than previous estimates. The numbers of near-Earth comets will be the subject of future work.
134 - A. Mainzer , T. Grav , J. Masiero 2011
The NEOWISE dataset offers the opportunity to study the variations in albedo for asteroid classification schemes based on visible and near-infrared observations for a large sample of minor planets. We have determined the albedos for nearly 1900 asteroids classified by the Tholen, Bus and Bus-DeMeo taxonomic classification schemes. We find that the S-complex spans a broad range of bright albedos, partially overlapping the low albedo C-complex at small sizes. As expected, the X-complex covers a wide range of albedos. The multi-wavelength infrared coverage provided by NEOWISE allows determination of the reflectivity at 3.4 and 4.6 $mu$m relative to the visible albedo. The direct computation of the reflectivity at 3.4 and 4.6 $mu$m enables a new means of comparing the various taxonomic classes. Although C, B, D and T asteroids all have similarly low visible albedos, the D and T types can be distinguished from the C and B types by examining their relative reflectance at 3.4 and 4.6 $mu$m. All of the albedo distributions are strongly affected by selection biases against small, low albedo objects, as all objects selected for taxonomic classification were chosen according to their visible light brightness. Due to these strong selection biases, we are unable to determine whether or not there are correlations between size, albedo and space weathering. We argue that the current set of classified asteroids makes any such correlations difficult to verify. A sample of taxonomically classified asteroids drawn without significant albedo bias is needed in order to perform such an analysis.
We present initial results from the Wide-field Infrared Survey Explorer (WISE), a four-band all-sky thermal infrared survey that produces data well suited to measuring the physical properties of asteroids, and the NEOWISE enhancement to the WISE mission allowing for detailed study of Solar system objects. Using a NEATM thermal model fitting routine we compute diameters for over 100,000 Main Belt asteroids from their IR thermal flux, with errors better than 10%. We then incorporate literature values of visible measurements (in the form of the H absolute magnitude) to determine albedos. Using these data we investigate the albedo and diameter distributions of the Main Belt. As observed previously, we find a change in the average albedo when comparing the inner, middle, and outer portions of the Main Belt. We also confirm that the albedo distribution of each region is strongly bimodal. We observe groupings of objects with similar albedos in regions of the Main Belt associated with dynamical breakup families. Asteroid families typically show a characteristic albedo for all members, but there are notable exceptions to this. This paper is the first look at the Main Belt asteroids in the WISE data, and only represents the preliminary, observed raw size and albedo distributions for the populations considered. These distributions are subject to survey biases inherent to the NEOWISE dataset and cannot yet be interpreted as describing the true populations; the debiased size and albedo distributions will be the subject of the next paper in this series.
On January 18-19 and June 28-29 of 2010, the Wide-field Infrared Survey Explorer (WISE) spacecraft imaged the Rosetta mission target, comet 67P/Churyumov-Gerasimenko. We present a preliminary analysis of the images, which provide a characterization of the dust environment at heliocentric distances similar to those planned for the initial spacecraft encounter, but on the outbound leg of its orbit rather than the inbound. Broad-band photometry yields low levels of CO2 production at a comet heliocentric distance of 3.32 AU and no detectable production at 4.18 AU. We find that at these heliocentric distances, large dust grains with mean grain diameters on the order of a millimeter or greater dominate the coma and evolve to populate the tail. This is further supported by broad-band photometry centered on the nucleus, which yield an estimated differential dust particle size distribution with a power law relation that is considerably shallower than average. We set a 3-sigma upper limit constraint on the albedo of the large-grain dust at <= 0.12. Our best estimate of the nucleus radius (1.82 +/- 0.20 km) and albedo (0.04 +/- 0.01) are in agreement with measurements previously reported in the literature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا