No Arabic abstract
It depends: While we find within holography that the lifetime of the magnetic field for collider energies like the ones achieved at RHIC is long enough to build up the chiral magnetic current, the lifetime of the magnetic field at LHC seems to be too short. We study the real time evolution of the chiral magnetic effect out-of-equilibrium in strongly coupled holographic gauge theories. We consider the backreaction of the magnetic field onto the geometry and monitor pressure and chiral magnetic current. Our findings show that generically at small magnetic field the pressure builds up faster than the chiral magnetic current whereas at strong magnetic field the opposite is true. At large charge we also find that equilibration is delayed significantly due to long lived oscillations. We also match the parameters of our model to QCD parameters and draw lessons of possible relevance to the realization of the chiral magnetic effect in heavy ion collisions. In particular, we find an equilibration time of about $sim0.35$ fm/c in presence of the chiral anomaly for plasma temperatures of order $Tsim300-400$ MeV.
The topological structure of vacuum is the cornerstone of non-Abelian gauge theories describing strong and electroweak interactions within the standard model of particle physics. However, transitions between different topological sectors of the vacuum (believed to be at the origin of the baryon asymmetry of the Universe) have never been observed directly. An experimental observation of such transitions in Quantum Chromodynamics (QCD) has become possible in heavy-ion collisions, where the chiral magnetic effect converts the chiral asymmetry (generated by topological transitions in hot QCD matter) into an electric current, under the presence of the magnetic field produced by the colliding ions. The Relativistic Heavy Ion Collider program on heavy-ion collisions such as the Zr-Zr and Ru-Ru isobars, thus has the potential to uncover the topological structure of vacuum in a laboratory experiment. This discovery would have far-reaching implications for the understanding of QCD, the origin of the baryon asymmetry in the present-day Universe, and for other areas, including condensed matter physics.
There are two canonical approaches to treating the Standard Model as an Effective Field Theory (EFT): Standard Model EFT (SMEFT), expressed in the electroweak symmetric phase utilizing the Higgs doublet, and Higgs EFT (HEFT), expressed in the broken phase utilizing the physical Higgs boson and an independent set of Goldstone bosons. HEFT encompasses SMEFT, so understanding whether SMEFT is sufficient motivates identifying UV theories that require HEFT as their low energy limit. This distinction is complicated by field redefinitions that obscure the naive differences between the two EFTs. By reformulating the question in a geometric language, we derive concrete criteria that can be used to distinguish SMEFT from HEFT independent of the chosen field basis. We highlight two cases where perturbative new physics must be matched onto HEFT: (i) the new particles derive all of their mass from electroweak symmetry breaking, and (ii) there are additional sources of electroweak symmetry breaking. Additionally, HEFT has a broader practical application: it can provide a more convergent parametrization when new physics lies near the weak scale. The ubiquity of models requiring HEFT suggests that SMEFT is not enough.
The chiral magnetic effect (CME) is an exact statement that connects via the axial anomaly the electric current in a system consisting of interacting fermions and gauge field with chirality imbalance that is put into a strong external magnetic field. Experimental search of the magnetically induced current in QCD in heavy ion collisions above a pseudocritical temperature hints, though not yet conclusive, that the induced current is either small or vanishing. This would imply that the chirality imbalance in QCD above $T_c$ that could be generated via topological fluctuations is at most very small. Here we present the most general reason for absence (smallness) of the chirality imbalance in QCD above Tc. It was recently found on the lattice that QCD above Tc is approximately chiral spin (CS) symmetric with the symmetry breaking at the level of a few percent. The CS transformations mix the right- and left-handed components of quarks. Then an exact CS symmetry would require absence of any chirality imbalance. Consequently an approximate CS symmetry admits at most a very small chirality imbalance in QCD above Tc. Hence the absence or smallness of an magnetically induced current observed in heavy ion collisions could be considered as experimental evidence for emergence of the CS symmetry above Tc.
The interplay of quantum anomalies with magnetic field and vorticity results in a variety of novel non-dissipative transport phenomena in systems with chiral fermions, including the quark-gluon plasma. Among them is the Chiral Magnetic Effect (CME) -- the generation of electric current along an external magnetic field induced by chirality imbalance. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of strongly coupled quark-gluon plasma, and can be studied in relativistic heavy ion collisions where strong magnetic fields are created by the colliding ions. Evidence for the CME and related phenomena has been reported by the STAR Collaboration at Relativistic Heavy Ion Collider at BNL, and by the ALICE Collaboration at the Large Hadron Collider at CERN. The goal of the present review is to provide an elementary introduction into the physics of anomalous chiral effects, to describe the current status of experimental studies in heavy ion physics, and to outline the future work, both in experiment and theory, needed to eliminate the existing uncertainties in the interpretation of the data.
Topological charge changing transitions can induce chirality in the quark-gluon plasma by the axial anomaly. We study the equilibrium response of the quark-gluon plasma in such a situation to an external magnetic field. To mimic the effect of the topological charge changing transitions we will introduce a chiral chemical potential. We will show that an electromagnetic current is generated along the magnetic field. This is the Chiral Magnetic Effect. We compute the magnitude of this current as a function of magnetic field, chirality, temperature, and baryon chemical potential.