No Arabic abstract
The interplay of quantum anomalies with magnetic field and vorticity results in a variety of novel non-dissipative transport phenomena in systems with chiral fermions, including the quark-gluon plasma. Among them is the Chiral Magnetic Effect (CME) -- the generation of electric current along an external magnetic field induced by chirality imbalance. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of strongly coupled quark-gluon plasma, and can be studied in relativistic heavy ion collisions where strong magnetic fields are created by the colliding ions. Evidence for the CME and related phenomena has been reported by the STAR Collaboration at Relativistic Heavy Ion Collider at BNL, and by the ALICE Collaboration at the Large Hadron Collider at CERN. The goal of the present review is to provide an elementary introduction into the physics of anomalous chiral effects, to describe the current status of experimental studies in heavy ion physics, and to outline the future work, both in experiment and theory, needed to eliminate the existing uncertainties in the interpretation of the data.
The topological structure of vacuum is the cornerstone of non-Abelian gauge theories describing strong and electroweak interactions within the standard model of particle physics. However, transitions between different topological sectors of the vacuum (believed to be at the origin of the baryon asymmetry of the Universe) have never been observed directly. An experimental observation of such transitions in Quantum Chromodynamics (QCD) has become possible in heavy-ion collisions, where the chiral magnetic effect converts the chiral asymmetry (generated by topological transitions in hot QCD matter) into an electric current, under the presence of the magnetic field produced by the colliding ions. The Relativistic Heavy Ion Collider program on heavy-ion collisions such as the Zr-Zr and Ru-Ru isobars, thus has the potential to uncover the topological structure of vacuum in a laboratory experiment. This discovery would have far-reaching implications for the understanding of QCD, the origin of the baryon asymmetry in the present-day Universe, and for other areas, including condensed matter physics.
We employ a 3+1D anomalous hydrodynamics with initial condition generated by HIJING to simulate the chiral vortical effect and the chiral magnetic effect in heavy-ion collisions. This allows us to calculate the charge-dependent two-particle correlations with respect to the reaction plane at different collision energies and centralities. We then compare the computed results with the experimental data and give discussions on the possible background effects.
We study systematically the topological charge density and the chiral density correlations in the early stage of high energy nuclear collisions: the intial condition is given by the McLerran-Venugopalan model and the evolution of the gluon fields is studied via the Classical Yang-Mills equations up to proper time $tauapprox 1$ fm/c for an $SU(2)$ evolving Glasma. Topological charge is related to the gauge invariant $bm E cdot bm B$ where $bm E$ and $bm B$ denote the color-electric and color-magnetic fields, while the chiral density is produced via the chiral anomaly of Quantum Chromodynamics. We study how the correlation lengths are related to the collision energy, and how the correlated domains grow up with proper time in the transverse plane for a boost invariant longitudinal expansion. We estimate the correlation lengths of both quantities, that after a short transient results of the order of the typical energy scale of the model, namely the inverse of the saturation scale. We estimate the proper time for the formation of a steady state in which the production of the chiral density in the transverse plane per unit rapidity slows down, as well as the amount of chiral density that would be present at the switch time between the Classical Yang-Mills evolution and the relativistic transport or hydro for the quark-gluon plasma phase.
We argue that the enhancement in the spin polarization of anti-hyperons compared to the polarization of the hyperons in noncentral relativistic heavy-ion collisions arises as a result of an interplay between the chiral and helical vortical effects. The chiral vortical effect generates the axial current of quarks along the vorticity axis while the recently found helical vortical effect generates the helicity flow -- the projection of the quarks polarization vector onto its momentum -- along the same axis. For massless fermions, the helical charge corresponds to a difference in the contributions of particles and anti-particles to the axial charge. Assuming that the spin of light quarks transfers to the strange quarks via the vector kaon states (the spin-vector dominance), we are able to describe the ratio of the (anti)hyperon spin polarizations, obtained by the STAR group, without fitting parameters. We also argue that the helical vortical effect dominates over the chiral vortical effect and the chiral magnetic effect in the generation of the electric current.
We study the chiral vortical conductivity in a holographic Weyl semimetal model, which describes a topological phase transition from the strongly coupled topologically nontrivial phase to a trivial phase. We focus on the temperature dependence of the chiral vortical conductivity where the mixed gauge-gravitational anomaly plays a crucial role. After a proper renormalization of the chiral vortical conductivity by the anomalous Hall conductivity and temperature squared, we find that at low temperature in both the Weyl semimetal phase and the quantum critical region this renormalized ratio stays as universal constants. More intriguingly, this ratio in the quantum critical region depends only on the emergent Lifshitz scaling exponent at the quantum critical point.