Do you want to publish a course? Click here

Locally Checkable Labelings with Small Messages

80   0   0.0 ( 0 )
 Added by Yannic Maus
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A rich line of work has been addressing the computational complexity of locally checkable labelings (LCLs), illustrating the landscape of possible complexities. In this paper, we study the landscape of LCL complexities under bandwidth restrictions. Our main results are twofold. First, we show that on trees, the CONGEST complexity of an LCL problem is asymptotically equal to its complexity in the LOCAL model. An analog statement for general (non-LCL) problems is known to be false. Second, we show that for general graphs this equivalence does not hold, by providing an LCL problem for which we show that it can be solved in $O(log n)$ rounds in the LOCAL model, but requires $tilde{Omega}(n^{1/2})$ rounds in the CONGEST model.



rate research

Read More

Network decompositions, as introduced by Awerbuch, Luby, Goldberg, and Plotkin [FOCS89], are one of the key algorithmic tools in distributed graph algorithms. We present an improved deterministic distributed algorithm for constructing network decompositions of power graphs using small messages, which improves upon the algorithm of Ghaffari and Kuhn [DISC18]. In addition, we provide a randomized distributed network decomposition algorithm, based on our deterministic algorithm, with failure probability exponentially small in the input size that works with small messages as well. Compared to the previous algorithm of Elkin and Neiman [PODC16], our algorithm achieves a better success probability at the expense of its round complexity, while giving a network decomposition of the same quality. As a consequence of the randomized algorithm for network decomposition, we get a faster randomized algorithm for computing a Maximal Independent Set, improving on a result of Ghaffari [SODA19]. Other implications of our improved deterministic network decomposition algorithm are: a faster deterministic distributed algorithms for constructing spanners and approximations of distributed set cover, improving results of Ghaffari, and Kuhn [DISC18] and Deurer, Kuhn, and Maus [PODC19]; and faster a deterministic distributed algorithm for constructing neighborhood covers, resolving an open question of Elkin [SODA04].
Consider any locally checkable labeling problem $Pi$ in rooted regular trees: there is a finite set of labels $Sigma$, and for each label $x in Sigma$ we specify what are permitted label combinations of the children for an internal node of label $x$ (the leaf nodes are unconstrained). This formalism is expressive enough to capture many classic problems studied in distributed computing, including vertex coloring, edge coloring, and maximal independent set. We show that the distributed computational complexity of any such problem $Pi$ falls in one of the following classes: it is $O(1)$, $Theta(log^* n)$, $Theta(log n)$, or $n^{Theta(1)}$ rounds in trees with $n$ nodes (and all of these classes are nonempty). We show that the complexity of any given problem is the same in all four standard models of distributed graph algorithms: deterministic $mathsf{LOCAL}$, randomized $mathsf{LOCAL}$, deterministic $mathsf{CONGEST}$, and randomized $mathsf{CONGEST}$ model. In particular, we show that randomness does not help in this setting, and the complexity class $Theta(log log n)$ does not exist (while it does exist in the broader setting of general trees). We also show how to systematically determine the complexity class of any such problem $Pi$, i.e., whether $Pi$ takes $O(1)$, $Theta(log^* n)$, $Theta(log n)$, or $n^{Theta(1)}$ rounds. While the algorithm may take exponential time in the size of the description of $Pi$, it is nevertheless practical: we provide a freely available implementation of the classifier algorithm, and it is fast enough to classify many problems of interest.
Locally checkable labeling problems (LCLs) are distributed graph problems in which a solution is globally feasible if it is locally feasible in all constant-radius neighborhoods. Vertex colorings, maximal independent sets, and maximal matchings are examples of LCLs. On the one hand, it is known that some LCLs benefit exponentially from randomness---for example, any deterministic distributed algorithm that finds a sinkless orientation requires $Theta(log n)$ rounds in the LOCAL model, while the randomized complexity of the problem is $Theta(log log n)$ rounds. On the other hand, there are also many LCLs in which randomness is useless. Previously, it was not known if there are any LCLs that benefit from randomness, but only subexponentially. We show that such problems exist: for example, there is an LCL with deterministic complexity $Theta(log^2 n)$ rounds and randomized complexity $Theta(log n log log n)$ rounds.
In the context of distance oracles, a labeling algorithm computes vertex labels during preprocessing. An $s,t$ query computes the corresponding distance from the labels of $s$ and $t$ only, without looking at the input graph. Hub labels is a class of labels that has been extensively studied. Performance of the hub label query depends on the label size. Hierarchical labels are a natural special kind of hub labels. These labels are related to other problems and can be computed more efficiently. This brings up a natural question of the quality of hierarchical labels. We show that there is a gap: optimal hierarchical labels can be polynomially bigger than the general hub labels. To prove this result, we give tight upper and lower bounds on the size of hierarchical and general labels for hypercubes.
Subgraph counting is a fundamental problem in analyzing massive graphs, often studied in the context of social and complex networks. There is a rich literature on designing efficient, accurate, and scalable algorithms for this problem. In this work, we tackle this challenge and design several new algorithms for subgraph counting in the Massively Parallel Computation (MPC) model: Given a graph $G$ over $n$ vertices, $m$ edges and $T$ triangles, our first main result is an algorithm that, with high probability, outputs a $(1+varepsilon)$-approximation to $T$, with optimal round and space complexity provided any $S geq max{(sqrt m, n^2/m)}$ space per machine, assuming $T=Omega(sqrt{m/n})$. Our second main result is an $tilde{O}_{delta}(log log n)$-rounds algorithm for exactly counting the number of triangles, parametrized by the arboricity $alpha$ of the input graph. The space per machine is $O(n^{delta})$ for any constant $delta$, and the total space is $O(malpha)$, which matches the time complexity of (combinatorial) triangle counting in the sequential model. We also prove that this result can be extended to exactly counting $k$-cliques for any constant $k$, with the same round complexity and total space $O(malpha^{k-2})$. Alternatively, allowing $O(alpha^2)$ space per machine, the total space requirement reduces to $O(nalpha^2)$. Finally, we prove that a recent result of Bera, Pashanasangi and Seshadhri (ITCS 2020) for exactly counting all subgraphs of size at most $5$, can be implemented in the MPC model in $tilde{O}_{delta}(sqrt{log n})$ rounds, $O(n^{delta})$ space per machine and $O(malpha^3)$ total space. Therefore, this result also exhibits the phenomenon that a time bound in the sequential model translates to a space bound in the MPC model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا